
Taken from an Educational Computing Services course on teaching AQA A2 
Computing 

 

1 
© Dr K R Bond 2011 

Size Does Matter Part One 
 
 When does size matter? When an algorithm is automated and executes on its input to produce 
an output. For example, one might have to wait a significant amount of time for a list of 100 
000 strings to be rearranged into alphabetical order by a computer. The time an algorithm 
takes to execute compared with another algorithm performing the same task is of considerable 
interest when the input data set is of significant size. Computer Scientists are interested in 
estimating, in general, how a particular algorithm's execution time depends on the size of 
input notwithstanding that different computers run at different speeds. To eliminate the 
difference in speed between computers, Computer Scientists try to answer the question "what 
happens to the execution time when the size of the input is doubled?" For example, if the 
number of strings to be placed in alphabetical order is doubled does it take twice as long, four 
times as long, etc?  
 
Many students have difficulty solving problems where the solution necessarily involves 
making estimates. The Physicist Enrico Fermi used to challenge his classes with problems 
that at first glance seemed impossible. One such problem was that of estimating the number 
of piano tuners in Chicago given only the population of the city. The answer is about 150 (to 
see a solution visit www.educational-computing.co.uk ). The approach to solving this type of 
problem became known as the Fermi Approach. This approach relies on knowing some facts, 
ignoring unnecessary details and making some reasonable assumptions. The same approach 
can be used to estimate the speed of execution of an algorithm. 
 
 It helps if the activity can be made a kinaesthetic one. One such activity is tracing a Bubble 
Sort on weights that need to be ordered by increasing size of weight. Figure 1 shows an 
abbreviated outline of this activity on a set of weights, A, B, C, D placed in descending order 
of weight, D, C, B, A. D is first compared in weight with C, then D with B, and so on. The 
process moves D creating a new ordering C, B, A, D. The weighing cycle begins again and 
finishes with the ordering B, A, C, D. The final cycle produces the desired outcome A, B, C, 
D. If the letter n is used to represent the number of weights then the number of weighing 
cycles is n – 1. This is exactly the same as the number of fetch-weigh-return operations in 
each cycle, i.e. n – 1. Fetch-weigh-return operation consists of fetching two adjacent 
weights, placing these in separate pans of the weighing scales, observing the difference in 
weight, if any, then returning the weights to their respective positions, swapping their 
positions if necessary. Let's represent the time in seconds for a fetch-weigh-return operation 
by the letter t, then one cycle will take (n – 1) times t seconds. Therefore, n – 1 cycles will 
take (n – 1) times (n – 1) times t seconds. The Enrico Fermi Approach says that we can 
approximate (n – 1) to n when n is large compared to 1, say n = 100 weights. 
Therefore, 
 

(n – 1)(n – 1)t is to a good approximation n times n times t  when n is large. 
 
We write n times n times t as n2t. We now have a formula for how long the weighing 
algorithm will take to execute on large inputs. Call this total time T. 
 

T = n2t 
 
We can now use this formula to estimate by what factor the execution time changes when the 
input size is doubled, e.g. from 100 weights to 200 weights. 
 
Time for 100 weights, 
 

T100 = 100 x 100 x t 



Taken from an Educational Computing Services course on teaching AQA A2 
Computing 

 

2 
© Dr K R Bond 2011 

 
Time for 200 weights, 
 

T200 = 200 x 200 x t 
 
This is 200 x 200 compared with 100 x 100 of t or 40 000 compared to 10 000, a ratio of 4 to 
1. This is bad news, doubling the number of weights results in the re-ordering of the weights 
process taking 4 times as long. Let's say that, that the time t for the fetch-weigh-return is 5 
seconds, then T100 = 10000 x 5 = 50 000 seconds and T200 = 40000 x 5 = 200 000 seconds. 
This is approximately 56 hours compared with 14 hours! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Start of first set of 
weighings 

End of First Set of 
Weighings 

D and C weighed D and C swapped D and B weighed 

D and B swapped D and A weighed D and A swapped 

Start of Second Set 
of Weighings 

End of First Set of 
Weighings 

End of Third Set of 
Weighings 

Start of Third Set of 
Weighings 

Figure 1 



Taken from an Educational Computing Services course on teaching AQA A2 
Computing 

 

3 
© Dr K R Bond 2011 

 
In practical terms, this exercise could be carried out with a set of weights constructed 
from plastic 35mm film canisters or similar canisters1 obtained from education supply 
companies such as Griffin Education containing coins to make the different weights. 
The canisters should be colour coded so that they can be distinguished visually. A 
weighing balance is not necessary because the weights can be compared by hand. The 
activity can be extended with a "no exchange of position of weights" indicator that 
can be a cup placed either up or down and the cycles of weighing continued until the 
no exchange indicator indicates "no exchange of position of weights" by the cup 
remaining in the up position. Before each weighing-cycle the cup is set to the up 
position. 

                                                
1 Plastic coloured sauce containers can also be used – a pack of four can cost as little as £2.99 from 
discount stores - or alternatively small paper cake cases, each containing a different number of penny 
coins – say, one, two, three and four, respecyively - will do. 


