Size Does Matter Part Two

Binary

"Binary" means of two parts, e.g. 0 or 1, heads or tails, yes or no, true or false, the choice between two alternatives. If pennies are used with 1 represented by a head and 0 represented by a tail, 100000 would appear as shown in Figure 1.

Figure 2 shows the penny patterns for one penny, two pennies, and three pennies. The number of penny patterns doubles each time, doubling means multiplying by two and incrementing the power of two by one.

 $C: \ Work \ ecs \ BigOF or CASNews \ Letter \ BigOP art 2. doc$

The Penny Binary Computer

Students struggle to understand the role of machine registers and machine operations. The **Penny Binary Computer** is one approach that the author has used to introduce students to machine architecture and machine operation, successfully. It can also support a better understanding of why some algorithms take more time to process data than other algorithms. The machine steps to perform an operation are exposed for students to experience. In the **Penny Binary Computer** pennies are moved and copied from a store of pennies to cash registers of pennies and vice versa. The store consists of **64** racks each of three pennies, cash registers each of three pennies and cash registers each of a single penny as shown in Figure 3. The cash registers are labelled with the names **R0**, **R1**, **R2**, **R3**, **Z**, **N** and **P**. The store racks are labelled **0**, **1**, **2**, **3**, **4**, etc. Figure 4 shows the registers without the pennies.

Figure 3

Figure 4

Commands

The command **Move #0, R0** means copy **zero** into the register **R0**. In the penny computer, this means placing the penny pattern

in the register **RO**.

The command Move R1, R0 means copy content of R1 into the register R0. In the penny computer, this means placing the penny pattern

in the register **RO** when **R1** contains

The command **Move(R0)**, **R3** means copy what is stored in memory location with address specified by content of **R0** into register **R3**, i.e. address is

the penny pattern stored in **RO**

3 C:\Work\ecs\BigOForCASNewsLetter\BigOPart2.doc

Bubble Sort

The following program rearranges the penny patterns in memory locations **0**, **1**, **2**, **3** so that the largest binary pattern value ends up in **3**, the next in **2**, the next in **1** and the least in **0**.

4 C:\Work\ecs\BigOForCASNewsLetter\BigOPart2.doc

ASM Tutor

The Penny Binary Computer leads on to a machine simulator such as ASM Tutor. Figure 5 shows ASM Tutor executing an assembly language program which simulates accepting input from a keyboard and output to an alphanumeric display. The registers and their role in the execution of the program can be seen clearly. The PC or Program Counter points to the next instruction to be fetched and executed. ASM Tutor is available from Educational Computing Services Ltd.

ese I	nerrupt - ASMTutor				
File Edit View Assemble Help					
Ru Ru R0 R1 R2	n Speed 1 0 0 0	∦ ⊫⊇ (R3 0 R4 0 R5 0	R6 PC 103 R7 0 SR 16 SP 15 I	Mapped Memory X	
В	Address	Inst	Operand / Data (R/W)	Comment Keyboard - Interrupt ge., X	
	100	move	#105,1	set interrupt service routine address	
	101	or	#\$0010,SR	enable interrupts 1 2 3 4 5 6 7 8 9 0	
	102	add	#1,R0	our main program.	
	103	jmp	102	loop forever.	
	104				
	105	move	4,R0	read the value from the keyboard buffer	
	106	move	R0,10	and write it to the memory mapped display.	
	107	rte		return from the service routine.	
	108				

© Dr K R Bond 2011