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Size Does Matter Part Three 
 

The AQA Computing specification for A2 requires candidates to have some appreciation of 
the complexity of a problem defined as the growth rate of the most efficient algorithm which 
solves the problem, i.e. its big O complexity. This includes problems whose growth rates are 
O(log2 n). Knowledge of logarithms is likely to be non-existent for a candidate who has not 
studied mathematics beyond GCSE level, However, it should be possible for candidates to 
become familiar with logarithms relatively quickly and then to see their use in computing. 
What follows is one approach that could be tried with plenty of exercises for the student to 
practice. 
 

The measure of size unit the googol is 1 followed by a hundred zeros  
 

10000000000000000........0000000000000........00000000000.......000000000 
 

It can be written in shorthand form as 10100. The shorthand form is known as the exponent or 
power-of-ten form, 100 is the power of ten for the googol. A decade is 1 followed by one 
zero, i.e. 10 or in shorthand notation 101 and a century is 1 followed by two zeroes, i.e. 100 
written in shorthand notation 102. The superscripts 100, 1 and 2 in the power-of-ten 
representation of the googol 10100,  decade 101 and century 102, denote the number of zeroes 
present in the long-hand form 100...00, 10, 100, respectively.  
The power-of-ten form is a much better system for representing large numbers compared with 
other systems such the Roman numeral system, not least because it makes multiplying of two 
numbers such as 12.5623 and 31.4902 a much easier task. 
 

To see how this is possible in principle, the powers of ten have been laid out as shown in 
Figure 1 alongside their exponents (powers).   Figure 1 

 
If we multiply 100 by 1000 we get 100 000 or 105. 
Now 5 = 2 + 3 but 2 and 3 are the exponents of 102 
and 103 which in turn are 100 and 1000. Therefore, to 
multiply two numbers we first express these as powers 
of 10 and then add the exponents. Finally, we convert 
the answer as a power of ten back to normal form, i.e. 
100 000. 
 

The term log is used to remind us that we wish to 
work with the exponent of a number, e.g. 
 

log 100 000 = 5 and log 100 = 2 if we are using 
exponents of 10, i.e. 105  and 102. 

 

This is expressed as log10 100 000 when we use 
exponents of 10 and log2 when we use exponents of 2, 
e.g. log2 16 = 4 because 16 can be expressed as 24.  
To reverse the process we use antilog as follows: 
 

antilog 5 = 105 
 
 

Figure 2 shows powers of 2 alongside their exponents. The exponent still counts the number 
of zeroes but this time the 1 followed by zeroes represents a binary number, e.g. binary 
1000000 represents the denary number 64. "Binary" means of two parts, e.g. 0 or 1, heads or 
tails, yes or no, true or false, the choice between two alternatives. If pennies are used with 1 
represented by head and 0 represented by tail, 100000 would appear as shown in Figure 3.  

Figure 3 
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Multiplying 1002 by 10002 is achieved by adding the corresponding exponents 2 and 3 (1002 
= 22 and 10002 = 23) to produce 5, Therefore, the answer is 25 or 1 followed by 5 zeroes, 
1000002. The subscript 2 means the 100000 represents a binary number with the binary digits 
0 and 1. Binary digit is often abbreviated to bit. One bit is the unit of information. When there 
is a choice of two alternatives the choice can be coded in one bit. 0 represents one alternative 
and 1 the other. Figure 3 shows another way using six pennies that we can write a binary 
number. We say Figure 3 uses 6 bits. 
 

Figure 4 shows a balloon containing about 2.5 litres of air 
at a pressure of 1.25 atmospheres and a temperature of 12 
°C. The Gas Laws1 and Avogadro's constant2, tell us that 
this balloon contains about 1023 molecules of air. Suppose 
we wanted to attach a label to each air molecule which 
would uniquely identify any air molecule to us and let's 
suppose we have only two alternatives to use for the label. 
We would need to use a binary numbering system. How 
many binary digits or bits would we need? Or how many 
pennies would we need? 
There are 1023 molecules so we need 1023 labels. If we had 
one bit, we could label 2 molecules, the first 0 and the 
second 1.  
With two bits, we could label 4 molecules, the first 00, the 
second 01, the third 10 and the fourth 11. With three bits 
we could label 8, four bits 16 and so on.  
 

We can use Figure 2 to deduce that the exponent  
corresponds to the number of bits and the denary number the number of labels – 2, 4, 8, 16, 
etc. Therefore, with n bits we could label 2n molecules. 
 

The answer is n bits where 1023 = 2n. How do we calculate n? We use logarithms as follows: 
 

Take the logs to the base 2 of both sides:     Figure 4 
 

log2 1023 = log2 2n  
 

log2 2n is easy, we know the answer is the exponent n. 
 

We rewrite log2 1023 as log2 (10 x 10 x 10 ..... x 10 x 10 x 10) 
 

To multiply we take the log, add and then antilog, i.e. reverse the process. 
 

log2 (10 x 10 x 10 ..... x 10 x 10 x 10) = log2 (antilog2 (log2 10 + log2 10 +..+ log2 10)) 
             = log2 (antilog2 (23log2 10)) 
             = log2 antilog2 (23log2 10) 
             = 23log2 10 because log2 antilog2 cancel each other 
Therefore,         n = 23log2 10 
But log2 10 = 3.321928, therefore 

n = 70.4 or approximately 71 bits 
 

Proceeding in a similar way, the number of elementary particles in the universe is in power-
of-ten form approximately 1090. This would require about 300 bits to label each uniquely. 
Other large quantities also benefit from representation in powers of ten, e.g. the number of 
atoms making up the earth's atmosphere is about 1044; the number of sand grains on 
Blackpool's pleasure beach is about 1020. How many bits are needed to label every atom in the 
earth's atmosphere with a unique label3? How many bits are needed to label every sand grain 
on Blackpool's beach with a unique label4?  

                                                
1 Boyle's and Charles' Laws combined: PV = RT 
2 Avogadro's constant = 6.023 x 1023 molecules per Mole 
3 Earth's atmosphere = 146 
4 Blackpool's beach = 66-67 

Figure 4 


