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Information

The term “hash” originates by
analogy with its non-technical
meaning, to “chop and mix”.
Hash functions often “chop”
the input domain into many
sub-domains that get “mixed”
e.g. add the first three digits of
the key, add the last three digits,
concatenate the two resulting
digit strings then map into

the output range by applying
modulo N.

Hashing

B Purpose: To understand the use of hashing functions in
cryptography and in hash tables

Chapter 33 introduced digital signatures whereby a digest of the message is signed
instead of the message 7. The message digest is shorter than the message 7 and is
generated by applying a hash function A to the message 7. The message digest
H(m) is typically between 128 and 512 bits, compared to thousands or millions of
bits for the message 2 itself. Signing H(m) is therefore much less computationally
intensive than signing » directly because signing H(m) involves working with

fewer bits.

In general, a hashing or hash function A maps input data, 7, of an arbitrary
length in a random way to an output of fixed length. The output, a fixed-length

random value, is called the hash value or just hash.
Hashing functions have many uses besides generating message digests.

For example, hash functions are also used as mapping functions in hash tables, a

data structure which is considered later in this chapter.

Hash functions used in cryptography are different from hash functions used
in hash tables. Cryptographic hash functions have specific security properties,

notably:

A cryptographic hash function should be a one way function, i.e. a

function which is practically infeasible to invert, i.e. given a message 7
it should be relatively easy to compute its hash value H(m), but given a
hash value x it should not be possible to find an 7 such that H(m) = x

given current computational resources.
ash table mapping functions are less stringent in this respect.
Hash tabl funct less st tin th t

Both cryptographic and hash table functions should have good collision
resistance. A collision occurs when H(m ) = H(m.,) for two different inputs 7, and

m.,, but hash table functions have ways of coping when collisions do occur.

Theoretically avoiding collisions is impossible because there are more possible

input values than there are possible output values.

However, the collision-resistance requirement simple means that, although
collisions exist, encountering these should be minimised in the case of hash tables

or avoided altogether in the case of cryptographic hash functions.

It is also important that both types of hash function should be quick to compute.
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Real hash functions are distinguished from the ideal hash function as follows:

The ideal hash function is a random mapping from all possible input values to the set of possible output

values i.e. output hash values are of equal likelihood;
Real hash functions only attempt to be indistinguishable from a random mapping.

Secure hash functions

We saw in the previous chapter that ciphers protect data confidentiality (i.e. attempt to prevent data sent over a
communication link from being read if intercepted).

We also saw that hash functions protect data integrity by attempting to detect when data have been modified
whether that data is encrypted or not - message digest and signed message digest.

If a hash function is secure, two distinct pieces of data should always have different hashes. A file’s hash (the result
of applying the hash function to the file) can thus serve as an identifier. Even if a single bit is changed in the file, the
hash of the file will be completely different.

Secondly, the output from a secure hash function should be unpredictable.

The console mode program shown in Table 34.1 calls function THashSHA2 . GetHashString, a class function,
which applies the Secure Hash Algorithm-2 (SHA2) to a single character to produce a 256-bit hash value output.
The function GetHashString returns a hexadecimal string which it generates by dividing each 256-bit hash value
into 64, 4-bit blocks before treating each block as a single hexadecimal digit which it then maps to its equivalent
hexadecimal character digit, e.g. hexadecimal digit C is mapped to character 'c'.

256 bits map to 64, 4-bit blocks which map to 64 characters chosen from the set ['0"..'9", 'a".."f"].

The output from this program for the characters 'a’, 'b" and 'c' is shown in Figure 34.1. Although the bit patterns
for 'a', 'b' and 'c' differ by only one or two bits (‘a' is the bit pattern 01100001, 'b" is 01100010 and 'c" is
01100011) their hash values are completely different. Given only these three hashes, it is impossible to predict the
SHA2 - 256 hash of 'd’, etc, i.e. the hash values are unpredictable. The function THashSHA2 . GetHashString

returns a random string each time it receives an input.

Program CryptoHashOnACharUsingSHAZ 256Project;

{SAPPTYPE CONSOLE} >
{SR *.res}
Uses

System.SysUtils, System.Hash;

Var
Ch : Char;
Begin
Repeat
Write ('Input char to hash: '");
Readln (Ch) ;
Writeln ('Hash value SHA2 of ', '"''', Ch, '"''', ' ="
+ THashSHA2.GetHashString (Ch, SHA256));
Writeln ('Hash value SHA2 of ', '''', Succ(Ch), '"''', ' ="
+ THashSHA2.GetHashString (Succ (Ch), SHA256));
Writeln ('Hash value SHA2 of ', '''', Succ(Succ(Ch)), '"''', ' ="

+ THashSHA2.GetHashString (Succ (Succ(Ch)), SHA256)) ;
Write ('Another go (Y/N)? ');
Readln (Ch) ;
Until Ch In ['N', 'n'];

End. Table 34.1 CryptoHashOnACharUsingSHA2_256Project.dpr
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Lnput char to hash: a A
Hash walue SHAZ of "a’ cafd78112calbbdcaftac231b39a23dcdda?86eff8147c4e72b9867785afecd48bhb
Hash wvalue SHAZ of 'b° 3e23e816808395945333894T6564e1b1348bbd7200888d42c4achb73eeaeds59cmaod
Hash wvalue SHAZ of "¢’ = 2e7d2cB3a9587ae265ecfSb5356885%a53393a2029d241304007265ala25aefch
Another go (Y/N)? y

Lnput char to hash: a

Hash walue SHAZ of "a’ cad78112calbbdcatac231b39a23dcdda?86eff8147c4e72b9867785afecd48bhb
Hash walue SHAZ of "b° 3e23e816803959453338041T6564e1b1348bbd7200888d42c4achb73eeaeds9caaod
Hash wvalue SHAZ of "¢’ = 2e7d2cB3a9587ae265ecfSbt356885%a53393a2029d241304007265ala25aefch

Figure 34.1 SHA2 - 256 hash values of the characters ‘a’, ‘b’, ‘c’

Preimage resistance

In practice, the security of a hash function, H(m), where m is any message, is judged by whether an attacker will
find m, given the generated hash value x. We call 7 the preimage in this scenario and the security property of the
hash function that resists discovery of 7 given hash value x, preimage resistance.

To illustrate the difficulty that an attacker will experience, consider a hash function that outputs hash values of

2% equally likely hash values. If just

length 256 bits and which behaves like a truly random function. There are
1024-bit length messages are considered, there are 2'°?* possible messages. Therefore, on average each possible
256-bit hash value will have 2'%%%/ 9256 = 27 preimages of 1024 bits each. 27°® is approximately 1.6 x 10"

If execution time of a preimage search algorithm for a match with hash value x - Table 34.2 - for one possible
message 72 is, say, 5 x 107 seconds, then to test half the possible messages of length 1024 bits would take 4 x 1074

seconds, an enormous amount of time. And then there are other possible bit length messages......

Function FindPrelImage (x : THashValue) : TMessage
Var
: TM .
" SR Information
Repeat

SHA2-256 is built into Apple Macs. Choose Terminal and then type
echo -n 'hello!" | shasum - a 256

to pass the string 'hello!" through a pipe (|) to the function

m ¢« GenerateRandomMessage
If H(m) = x
Then Exit;
Until False
Result «m

shasum.
Install NotePad++ on Windows. This editor has a SHA-256

Fi6. Fomedon option under Tools.

Table 34.2 Pseudocode for preimage search algorithm for a secure hash function h

Preimage resistance may be divided into first-preimage resistance and second-preimage resistance.
First-preimage resistance means the degree of resistance to discovering any message that maps to a given hash value.

Second-preimage resistance means the degree of resistance for a given message 72, of finding a second message 2, that
hashes to the same value as 2.

First-preimage resistance

First-preimage resistance is important in the case of passwords which are hashed and saved in a database. When

a user logs in, the hash of the entered password is computed and compared against the stored hash value. The
intention of storing hashes of passwords instead of storing passwords directly is to keep passwords stored in a
system confidential. As passwords are usually of limited length, a salt (random data) is added to the password before
hashing to make it more difficult to discover the password given the hash value. Storing passwords in this way relies

crucially on the hash not being reversed by an attacker, i.e. first-preimage resistance.
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Second-preimage resistance
Second-preimage resistance is important in protocols which focus on message integrity. A match between the original

message and its hash should be confirmation that the document has not been altered.

Second-preimage resistance is also important in a commitment scheme which is a cryptographic primitive that allows
one to commit to a chosen value (or chosen statement) while keeping it hidden from others, with the ability to
reveal the committed value later.
Interactions in a commitment scheme take place in two phases:

* the commit phase during which a value is chosen and specified

* the reveal phase during which the value is revealed and checked
Figure 34.2 shows an example in which Bob sends the hash value of an even or odd number chosen from some
prearranged fixed but large range of integers. The chosen number encodes the setting of a single bit known only to
Bob at this stage. In the commitment phase, Bob chooses an even number if the bit is to be set to one, otherwise he
chooses an odd number. Alice on receipt of the hashed value makes a guess as to the setting of Bob’s bit and replies
by sending her guess as a single bit. Upon receiving Alice’s guess, Bob enters the reveal stage by sending the original
number. On receipt, Alice verifies this number by comparing the hash of this number with the hash value received
during the commit stage. If Bob uses a hash function that has weak second-preimage resistance then it is possible
that Bob knows of a different number with opposite parity (evenness or oddness) that produces the same hash value
as the committed number. Bob then has the option to determine the outcome whether Alice guesses correctly or
not by exploiting the second-preimage weakness in the hash function.
What might Bob’s bit sequence represent? One case is the sequence represents the head|tail outcome of a series of

coin tosses which Alice is required to guess.

Bob’s bit sequence encoded as a
sequence of even and odd numbers, 7.
1 is encoded as an even number, 0 as
an odd number. Bob hashes each
0.10001011011 number using hash
NS S

Odd. Even 0dd 0dd 0dd Even 0dd Even Even 0dd Even Even

n, e n n_n, n n, n n n, n, n n Hash value x

& 1w T e T 7 T 5 i 57 1 »| Hash &7 L - Stor
: : : : : : : : o Hash o exl
Hash value x
V Voo Pooro V \—% Hash & 2 | Values Store x,

Hash value x, sent X X53%5%) -
- . secure 3
|+| Hash value x, link to
J Alice’s bit sequence
Alice sends guesses as the bit Alice's | *———GuessEven — 1 1 001 100 11 0...1
sequence she wants to send to Bob guesses 1
sent ~+—QGuess Even
117001100110 ... 1 0
over <+——Guess Odd
secure .
link to |
5 1. Bob ~+——QGuess £
Bob’s bit sequence encoded o
as even and odd numbers 7. ;
Alice checks Alice
(R P A P > n, ngon, n —— integrity of » »| checks s 0..1T 0001011011
using stored x evenness . . S
Odd. Even 0dd 0dd 0dd Even 0dd Even Even 0dd Even Even of n Alice receives Bob’s bit

sequence having checked
its integrity against the

Reliable and secure exchange of bit sequences between Bob and Alice. stored hashes.

Bob encodes his bit sequence as even and odd numbers chosen from a
prearranged fixed but large range of numbers.
Alice encodes her bit sequence as guesses, even is 1, odd is 0.

Figure 34.2 Commitment scheme
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Collision resistance
Whatever hash function is used, there are always more possible messages by design than hash values so collisions

must exist. This is the pigeonhole principle in action.

The pigeonhole principle states that if there are 7 holes and 7 pigeons to put in these holes, and if 7 is

greater than 7, at least one hole must contain more than one pigeon.

The collision resistance of a hash function is a measure of how hard it is to find collisions. A collision resistant hash
function is one which should make it infeasible for attackers to find two distinct messages that hash to the same

value.

Collision resistance is related to second-preimage resistance. If it is possible to find second-preimages for a hash
function, it is also possible to find collisions.
It is actually faster to find collisions than it is to find preimages thanks to the birthday attack. The birthday attack is
a restatement of the birthday problem of calculating the probability that in a set of 7z randomly selected people, at
least two people share the same birthday.
Let p(n) be the probability that in a set of # randomly chosen people at least two people share the same birthday.
Then 1 - p(n) is the probability that every single one of them has distinct birthdays.
The number of ways to pick 7 distinct birthdays from a set of 366 days (when the order in which you pick the
birthdays matters) is

366 x 365 x.....x (367 - n)
because each successive birthday has one fewer choice of days left.
The number of possibilities for the birthdays for 7 people is 366”.(although not all equally likely because of the leap

year, but we will ignore this)

Therefore,
1-p(n) =366x365 x.....x (367 - n)

366"

1-p(n) = 366!
366" x (366 - n)!

pn) =1 - 3661
366" x (366 - 7)!

Ifn=24
? 366! = 9.19 x 1078

366" = 366%* = 3.34 x 10°!
(366 - n)! = (366 - 24)! = 342! = 5.95x 10"Y
366%* x 342! =3.34x 10° x5.95x 10"" = 19.87 x 107%°

Therefore, p(24) =1 - 366! =1- 9.19x10%  =1-046=0.54

366" x (366 - 24)! 19.87 x 1078

The probability that in a set of 24 randomly chosen people at least two people share the same birthday is 54%.
If the calculation is repeated but with 7 = 72 the probability is close to 100%.
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We are now ready to answer the question:

How many values does an attacker need to compute before the probability of a collision is greater than 50%?
Suppose that a hash function is chosen with a 64-bit range, i.e. its output is a 64-bit nonnegative integer less than 2%4(0..2%-1).
Just as with the birthday problem, the probability of a collision from 7 random samples is

P2y(m) =1 - M!
M"x (M - n)!

where M = 2% the number of possible hash values.

For n* << M ,
pyln) =
2M
For p. (n) =0.5
M 0.5 ~
2M

i.c. 7 is of the order of VM. For M = 2%, \/M = 2** which is approximately 4 x 10°. Trialling this number of sample
messages is feasible (hash(sample value)). This vulnerability necessitates the use of a larger hash range in practical

applications.

2256 then for #? << M, n is of the order

If a 256-bit range is chosen, i.e. hash values of nonnegative integers less than
of V2%, i.e. 2'%® which is approximately 3 x 10%, The number of values an attacker needs to compute before the

probability of a collision is greater than 50% is now large enough to be infeasible by a brute force approach.
How can an attacker exploit a collision vulnerability in a hashing function?

An attacker typically begins by constructing two messages with the same hash value where one message

appears legitimate. For example, when an attacker, X, discovers that the message

"1, SomeName, agree to pay X the sum of £5000.00 on 01/03/2021."
has the same hash as

"1, SomeName, agree to pay X the sum of £50000.00 on 09/03/2021."

then X can try to get the victim, SomeName, to digitally sign the first message. The attacker X can then
claim that SomeName actually signed the second message. SomeName signs the hash of the first and
genuine message, i.e. signs the message digest, with his/her private key and the attacker X retrieves the
hash from the digitally signed message digest by using SommeName's public key. X now attempts to prove

that the hash for the confirmed signature matches the second bogus message.

Collisions have been announced for the following hash functions

 SHA-0

« MD4

e MD5

» HAVAL-128
 RIPEMD

* SHA-1.
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Hash function construction
The simplest way to hash a message is to split it into chunks and process each chunk consecutively using a similar
algorithm. This is called iterative hashing. It comes in two main forms:
* Using a technique based on a compression function that transforms an input to a smaller output. This is
known as the Merkle-Damgérd construction after cryptographers Raplh Mekle and Ivan Damgérd.
MD4, MD5, SHA-1, and the SHA-2 family are examples.
* Using a technique that transforms an input, a binary string of any length, and returns a binary string with
any requested length, such that any two different inputs give two different outputs, i.e. permutations.

Such functions are called sponge functions. An example is Keccak

which is also known as SHA-3. SILETE
. X . . BE L& &
Hashing file contents in Delphi 1 frmSHAHash
Start a new application New|Window VCL Application - Delphi. OpenDialog
Save the project as CryptographicHashOnFileProject.dproj = Panr:::shsmng
and its unit as CryptographicHashOnFileUnit.pas in folder [] PanelTopLeft

A btnHashSHAT
©a btnHashSHAZ_224
Add the following components to the form: & btnHashSHA2_256

ma btnHashSHAZ 512
. 3
3 X TPanel & btnSelectHashFileMame
¢ 6 x TButton e btnSelectNameOfFileToHash

1 edtMameOfFileToHash

CryptographicHashOnFileProject.

* 2 xTEdit _
1 edtMameOfHashFile
e 2 x TLabel abe IblinputFileMame
e 2 xTMemo Abc I?IOutputFileName
[] PanelRight
e 1Ix TOpenDialog mbReportProgress
Configure and rename these as shown in Figure 34.3 and Figure 34.4. Figure 34.3 Structure window

e

'@ SHA Hashing EI@

Hash SHA1 Hash SHAZ 224 Hash SHAZ 256 Hash SHAZ 512
Select name of file to hash MName of file to hash | |
Select Hash file name Hash filename | |

OpenDialogl

Figure 34.4 CryptographicHashOnFileProject user interface design
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Double click the buttons to create event-handlers.
Add the following to the class definition as shown in Table 34.3.

Procedure SHAlHashFile (InputFileName, HashFileName String);

Procedure SHA2 512HashFile (InputFileName, HashFileName String);
Procedure SHA2 256HashFile (InputFileName, HashFileName String);
Procedure SHA2 224HashFile (InputFileName, HashFileName String);

Place the cursor in each of these in turn and press Ctrl+Shift+C to create the skeleton procedure definition in the

Implementation section.

Add the code shown in Tuble 34.4 to the body of Procedure SHA2 256HashFile.

Repeat this process for the other procedures except SHA1HashFile changing the references SHA256 to the

appropriate references for the respective procedure, e.g. SHA256 = SHA512.

SHAlHashFile. GetHashStringFromFile body code is similar for all but

OutputStringList.Add (THashSHAl.GetHashStringFromFile (InputFileName)) ;

which has only one parameter.

Type

Panelleft

Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
End;
Var

frmSHAHash: TfrmSHAHash;

TfrmSHAHash = Class (TForm)
PanelTopLeft
PanelRight
mbReportProgress
btnHashSHA1
btnHashSHAZ2 512
edtNameOfFileToHash:
1lblInputFileName
edtNameOfHashFile:
1blOutputFileName
btnSelectNameOfFileToHash
btnSelectHashFileName
OpenDialogl

mbHashString
btnHashSHA2 256
btnHashSHAZ 224

TPanel;
TPanel;
TMemo ;
TButton;
TButton;
TEdit;
TLabel;
TEdit;
TLabel;
TButton;
TButton;
TOpenDialog;
TPanel;
TMemo ;
TButton;
TButton;
btnHashSHA1Click (Sender TObject) ;
btnHashSHA2 512Click (Sender TObject) ;
btnSelectHashFileNameClick (Sender TObject) ;
btnSelectNameOfFileToHashClick (Sender TObject) ;
HashFileName

SHAlHashFile (InputFileName, String) ;

SHA2_512HashFile(InputFileName, HashFileName String);
SHA2 256HashFile (InputFileName, HashFileName String);
SHA2 224HashFile (InputFileName,
btnHashSHAZ2 256Click (Sender TObject) ;

btnHashSHA2 224Click(Sender TObject) ;

HashFileName String) ;

Table 34.3 Class definition TfrmSHAHash and variable declaration frmSHAHash
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Add the code shown in Table 34.5 to the body of event handler btnHashSHA2 256C1lick.

Repeat for the other btnHash. ...Click event handlers replacing references to SHA2 256 to the relevant hashing

algorithm.

Add the code shown in Table 34.6 to the bodies of the OpenDialog event handlers.

Save All (SHIFT+CTRL+S).

Click Run (F9) to build and run the application CryptographicHashOnFileProject.

Figure 34.5 shows CryptographicHashOnFileProject in execution. Books. txt is an 80 kB text file
downloaded from http://www.gutenberg.org/files/64684/64684-0.txt.

Procedure TfrmSHAHash.SHA2 256HashFile (InputFileName, HashFileName : String);
Var
OutputStream : TFileStream;

OutputStringList : TStringList;
Begin P
If FileExists (InputFileName)
Then
Begin

OutputStringList := TStringList.Create;
OutputStringList.Add (THashSHA2.GetHashStringFromFile (InputFileName, SHA256));
OutputStream := TFileStream.Create (HashFileName, fmCreate);

OutputStringList.SaveToStream (OutputStream) ;

mbHashString.Lines.Add (OutputStringList.Text) ;

mbReportProgress.Lines.Add ('Size of contents of hash file '
+ ExtractFileName (HashFileName) + ' produced with SHA2 256 is in bits '
+ IntToStr (4 * Length (THashSHA2.GetHashStringFromFile (InputFileName, SHA256)))
+ 'L+ #10#13#10#13);

OutputStream.Free;

OutputStringlList.Free;

End
Else ShowMessage('File doesn''t exist');

s Table 34.4 Procedure that applies SHA2-256 hash function to input file

Procedure TfrmSHAHash.btnHashSHA2 256Click (Sender : TObject);
Begin
SHA2 256HashFile (edtNameOfFileToHash.Text, edtNameOfHashFile.Text);
mbReportProgress.Lines.Add ('Input file ' + ExtractFileName (edtNameOfFileToHash.Text)
+ ' hashed with SHA2 256.' + #10#13#10#13);
mbReportProgress.Lines.Add ('Output file ' + ExtractFileName (edtNameOfHashFile.Text)
+ ' produced with SHA2 256.' + #10#13#10#13);

e Table 34.5 Event handler for btnHashSHA2_256Click

Procedure TfrmSHAHash.btnSelectNameOfFileToHashClick (Sender : TObject) ;
Begin P

If OpenDialogl.Execute
Then edtNameOfFileToHash.Text := OpenDialogl.FileName;
End;

Procedure TfrmSHAHash.btnSelectHashFileNameClick (Sender : TObject) ;
Begin
If OpenDialogl.Execute
Then edtNameOfHashFile.Text := OpenDialogl.FileName;
End;

Table 34.6 Event handlers for the input and output file dialogues
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| (® SHA Hashing - O X

Size of contents of hash file BookSHA1 hsh produced
Hash SHA1 Hash SHAZ 224 Hash SHAZ 256 Hash SHAZ 512 with SHA1 is in bits 160,

Input file Book. tit hashed with SHAL

select name of file to hash Mame of file to hash |D:'|,Bu:uok.t><t | Cutput file BookSHAL.hsh produced with SHA L.

1 Size of contents of hash file BookSHAZ-224.hsh
produced with SHAZ 224 is in bits 224,

E Select Hash file name Hash filename |D: \BookSHAZ2-512.hsh | Input file Book. bt hashed with SHAZ 224,

Qutput file BookSHAZ2-224,hsh produced with SHAZ
4 224,

; 56e25b0457708824b87c2dc34f11098753030bc4

] Size of contents of hash file BookSHAZ-256.hsh
4| c96b2a2642c30c9c892bfoca0822cdd 41 2a60438b8ceb30dafd0a3a produced with SHA2 256 is in bits 258.
q

i e3a2316319e93fc4310895d856405396ed675ead 575451 2c5f3faa3dd 1ad6 1751 Input file Book. txt hashed with SHA2 258,

206efdfe034271b956 1acc27091363d 11026fbabc Sdd3e0456a41e 336427 79c0b6 0654 5a Thf6 252930975 || Output file BockSHAZ-258.hsh produced with SHAZ
fr3ce3e408cdbabe 15005 1b665f37323a 78d06bfa 255,

Size of contents of hash file BookSHA2-512.hsh
produced with SHAZ 512 is in bits 512,

Input file Book. txt hashed with SHAZ 512,

Qutput file BookSHAZ2-512,hsh produced with SHAZ
512,

Figure 34.5 CryptographicHashOnFileProject in execution
Bitcoin® and Blockchain
The Bitcoin project was the first to bring together technologies from the 1970s, 80s and 90s to create something

novel that solved important problems associated with a digital currency based on a distributed ledger system.
According to Wikipedia':
A ledger is a book or collection of accounts in which account transactions are recorded. Each account has an opening or

carry-forward balance, and would record transactions as either a debit or credit in separate columns, and the ending or

closing balance.
Bitcoin uses

* apeer-to-peer network protocol (see BitTorrent for an example of a peer-to-peer network) consisting of miner
nodes (miners compete to add blocks to the blockchain) and nodes that keep the network operating (these nodes
validate blocks, confirm transactions and send updates to ledgers in real time) - Figure 34.6.

* some core cryptographic functions - SHA-256, RIPEMD160, Elliptic Curve Digital Signature Algorithm
(ECDSA), public key/private key encryption.

* Game theory - a dynamically adjusting equilibrium system that uses economics at a global scale - the energy
cost incurred in solving a challenge (proof of work) - to enable a trustless distributed system to function

successfully.

Miners create blocks containing transactions picked from a pool of transactions.
Each miner that successfully solves a challenge may then attach their block to the chain of blocks called Bitcoin’s

blockchain - Figure 34.7.
The challenge is of sufficient computational difficulty to deny an algorithmic solution so miners are left with no

choice but to use a brute-force approach. The level of difficulty is set so that finding a solution takes approximately
10 minutes. Miners using hashing algorithm SHA-256 have to find the nonce (number used only once) that when

concatenated with a hash of the previous block, a hash of the transactions in the block and a timestamp produces a

1 Wikipedia - Text under CC-BY-SA license - https://en.wikipedia.org/wiki/Ledger
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hash with a required number of leading zeroes - Figure 34.8. The hash value produced in this way becomes the new

block’s hash value.

Block hash = SHA-256 Hash(Hash of previous block + Transactions hash + Timestamp + Nonce)

GLOBAL BITCOIN NODES
DISTRIBUTION

Reachable nodes as of Mon Mar 22 2021
16:31:57 GMT+0000 (Greenwich Mean Time).

10154 NODES
24-hour charts »

Top 10 countries with their respective number of
reachable nodes are as follow. o>

RANK COUNTRY NODES
1 United States 1842 (19.13%) i
2 Germany 1817 (17.89%)
3 n/a 1781 (17.54%)
4 France 620 (6.11%) "
5 Netherlands 426 (4.20%)
6 Canada 357 {3.52%)
7 United Kingdom 314 (3.09%)

8 Russian Federation 269 (2.65%)
9 China 212 (2.09%)
10  Singapare 188 (1.85%)

Mare (104) »

Map shows concentration of reachable Bitcoin nodes found in countries around the world.

Figure 34.6 Map of bitcoin nodes
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Hash(Previous Block Header)
Timestamp
Nonce

Merkle Root Hash
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Transaction List

https://bitnodes.io site is ©ADDY YEOW

Block Header

Hash(Previous Block Header)
Timestamp
Nonce
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Hash(Block 2 Header)

Transaction List

LIVE MAP

Block Header

Hash(Previous Block Header)

Timestamp
Nonce

Merkle Root Hash

Hash(Block 3 Header)

Transaction List

Time '

Figure 34.7 Structure of a block in Bitcoin’s blockchain

The first miner to solve the challenge has their block of transactions added to the blockchain once their solution

has been validated by other nodes in the network (the new block contains everything needed to validate the

block’s hash, i.e. verify that the challenge has been solved). As each node in the network contains a local copy of

the blockchain, the local copies are updated by propogating the validated new block through the network. Very

occasionally, two miners arrive at a solution about the same time (their block’s timestamp will verify this) and start

the propogation process at about the same time. Imagine that these two miners are on opposite sides of the globe,

then for a while nodes closer to one miner will add this miner’s block while nodes closer to the other will get that
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miner’s block. Thus for a while, half the network will have one blockchain version and the other half the other.

What should be done when the new blocks cross over? When this happens a fork is added to the blockchain to

accommodate the other block. On receiving a validated block, miners stop working on the current challenge -some

miners will be using transactions that occur in the accepted block - and start a new block challenge with other

transactions from the unprocessed pool. The arrival of the second block with a timestamp similar to the newly

added block signals that a fork must occur. The winner of the next challenge round will add their validated block to

the oldest branch of the fork i.e. the branch before the fork arose in their local copy. After five new blocks have been

added, one branch of the fork must be longer than the other. The longest branch is then kept and the shorter one

abandoned, with its transactions returned to the unprocessed transaction pool if they have not been included in any

of the blocks in the retained branch.

Trans:

Prev: ‘00000000000000...0000000000000 ‘

Hash: ‘000000000019d6‘..b3f1 b60a8ce26f‘ 1

2,573,394,689

Coinbase:‘BTc‘so.oooooooo‘—>‘ Mick ‘

Block: ‘ # ‘ 0 ‘ Block: ‘ # ‘
Nonce: ‘ 2,083,236,893 ‘ Nonce: ‘
Coinbase: ‘ BTC‘S0.00000000‘ —> ‘ Mick ‘

Trans:

BTC| 10.00 |From | Mick | — | Anne
BTC| 5.00 |From | Mick | — | Mary
BTC| 20.00 |From | Mick | —» | Ben
BTC| 10.00 |From | Mick | — |Nat

[~ Prev: ‘000000000019d6.

..b3f1b60a8ce26f ‘

Hash: ‘ 00000000839a8e.

..161bbf18eb6048 ‘ 4

/

Trans:

Nonce: ‘

Block: ‘ # ‘

1,639,830,024

Coinbase:‘BTC‘so.oooooooo‘ —>‘ Mick ‘

BTC| 10.00 |From | Ben —» | Mary
BTC| 5.00 |From | Ben —> | Alice
BTC| 5.00 |From | Nat —» | Sid

|- Prev: ‘00000000839a8e...161bbf186b6048 ‘

Hash: ‘ 000000006a625f...9da3fdcc99ddbd ‘

Figure 34.8 Simplified view of blocks in the blockchain

The blockchain is a chain of blocks containing every transaction that has occurred with the very first, a special

transaction called a coinbase transaction, recorded in block 0. Coinbase transaction are assigned their own space

in the block. In Bitcoin, miners are rewarded with bitcoins everytime they succeed in solving the challenge.

Figure 34.8 shows that miner Mick has been rewarded three times with 50 BTC each time. This is recorded in the

coinbase field of the block. Whilst Bitcoin was still in its proof of concept stage, the blocks were currency-generation-

blocks similar to block 0 in Figure 34.8. Spending came later when it was clearly demonstrated that Bitcoin had

solved the coordination problem for shared ledgers:

Shared ledgers (each node in the network has their own local copy of the ledger) with multiple

collaborators are vulnerable to errors infiltrating the ledger because it is hard to coordinate the actions of

multiple users when they are acting independently.

In a "trustless" community of anonymous users, in addition to honest mistakes, the system must also

guard against malicious users who are potentially seeking to defraud others.

Balances are not recorded in the blockchain, instead to answer the question, "How many BTCs does Mick have

currently?" requires that a local copy of the ledger is searched for all MicK’s transactions, both inputs and outputs.

The answer to the question is then given by the sum of the inputs minus the sum of the outputs. This is also the

approach used to prevent Mick from spending what he doesn’t have.

The blockchain of Bitcoin may be explorered at www.blockchain.com. Figure 34.9 shows block 2.
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Explorer » Bitcoin Explorer » > Block GEP -

Block 2 BTC
Hash 000000006a625f06636b8bbEac7ha60a8d03705d1ace08b1al9da3fdcco9ddbd @ ‘Spansared Content
Confirmations 676,080

Timestamp 2009-01-09 02:55

Height 2

Miner Unknown

MNumber of Transactions 1

Difficulty 1.00

Merkle root 9b0fc82260312cedderdef 3691 5c66bbbE5E48f ZedddSaTalede251e54ccfddS

Version Ol

Bits 486,604,799

Weight 860 WU

Slm 215 bytes Figure 34.9 Block 2 of Bitcoin’s blockchain
Nonce 1,639,830,024

Transaction Volume 0.00000000 BETC

Block Reward 50.00000000 BTC

Fee Reward 0.00000000 BETC

Figure 34.10 shows the first two transactions for block 400000. In addition to collecting a reward in btc for mining

a block, miners may also collect a fee per transaction. The sender in the second transaction has Bitcoin address

13XSrVkweo5Dzm3yuykFw4P63N63MAGbTd
This uses a modified Base 58 binary-to-text encoding known as Base58Check”. This sender sent 0.19206072 BTC
to address IHU1LDBXUg73{2r02¢2dB3XY8cFoYLFgZZ. The transaction itself is protected with a hash value
0de586d0c74780605¢36c0£51dcd850d1772f41a92c549¢32a3619¢78e905284

Hash a8d0c0184dde984a09ec054286f1ce581bebf46446a512166eae76... 2016-02-25 16:24
COINBASE (Newly Generated Coins) = 1BQLNJtMDKmMMZ4PyqVFfRUBNvoGhjigBKF  25.33349423 BTC
Fee 0.00000000 BTC 2533349423 BTC

(0.000 sat/B - 0.000 sat/WU - 148 bytes)

Hash 0de586d0c74780605¢36c0f51dcd850d1772141a92¢549e3aa369e... 2016-02-25 16:24
13XSrVkweoSDzm3yuykFwAPE3NE3MABLTA  019206072BTC #  mh THU1LDBXUg73f2ro2e2dB3XY8cFoYLFgZZ 018706072 BTC 4
Fee 0.00500000 BTC 018706072 BTC

(2604.167 sat/B - 651.042 sat/WU - 192 bytes)

Hash fc12dfch4723715a456c6984e298e00c479706067da81be9692808. . 2016-02-25 16:24
17bAY2JM37he7tMiyvA TUUYJINAKpCTd7Ma 027116620 BTC &  mp IMxhYrFghdiPbePwDo8LVvuCe5dsdojG7a 2.00000000 BTC 4
17bAY 2JM37he7tMiyva TUUYJINAKpCTd7Ma 1.53804000 BTC 17bAY2JM37he7tMiyv4 TUUYJINdKpCTd7Ma 4,69749640 BTC &

17bAY 2JM37he7tMiyv4ATUUYJINdKpCTd7Ma 4.89629000 BTC @&

Figure 34.10 The first two transactions of block 4000001

Bitcoin relies on public key cryptography, where a private key — comparable to an account password —is used to
authorise ("sign") a movement of funds stored in an address. The address, which can be thought of as an account
number, is derived from the public key that mathematically corresponds to the private key. Each owner transfers

Bitcoin by digitally signing a hash of the previous transaction(s) (assigning Bitcoin to the sender - any change is just

2 https://en.bitcoin.it/wiki/Base58Check encoding
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sent back to the sender) and the public key of the next owner. Transactions are therefore digitally signed records
that reassign ownership of Bitcoins to new addresses. Miners verify that a transaction is genuine using the sender’s
public key. Software programs, commonly referred to as wallets, handle the management of the key pairs - see

https://www.coinbase.com/ for an example of how to create a wallet and to start using Bitcoin. Satoshi Nakamoto,

the anonymous creator of the Bitcoin network, actually defined Bitcoin as the chain of digital signatures that come

together to form a blockchain.

A user’s Bitcoin network wallet - e.g https://www.coinbase.com/ - monitors the user’s Bitcoin addresses (they can

have more than one public/private key pair) and keeps a record of all the transactions associated with these Bitcoin

addresses to create the user’s balance from the Bitcoin ledger.

Figure 34.11 shows the hash generated for the string "Hello World!" by Delphi program
HashingWithSHA256Project.exe. Load this program and make small alterations to the string, e.g. remove
the "!" character. Notice how the hash value changes in an unpredictable and seemingly random way. Of course,
SHA-256 is deterministic, i.e. the same output is produced for a given input. However, its output passes statistical

tests used to determine randomness. Tizble 34.7 shows the unit for this program, HashingWithSHA256Unit .pas.

®

Hello Warld!

5SHA-256 Hash Value:
7f83b1657ff1fc53b92dc 18 1485 1d65dfc2d4b 1fa3d6 7728 4addd 200 12649065

Figure 34.11 HashingWithSHA256 Project in execution

Figure 34.11 shows the construction of a binary tree of hashes known as a Merkle tree, which is used primarily to
verify the data held within, without revealing what that data is, and at speed. Alteration of any of the underlying

data will be readily revealed.

Root = Hash(H4, H5)

/\

H4 = Hash(HO, H1)

/\

HO = Hash(Data0)

A

H1 =Hash(Data1)

H5 = Hash(H2, H3)

/\

Data0

A

H2 = Hash(Data2)

Datal

A

H3 = Hash(Data3)

Data2

A

Data3

Figure 34.11 Merkle tree - binary data tree of hashes
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Uses

Type

Var

End.

Winapi.Windows,
System.Classes,
Vcl.

stdctrls,

TfrmSHA256HashingOfText =

frmSHA256HashingOfText:

Implementation
{SR *.
Procedure TfrmSHA256HashingOfText.mbTextChange (Sender
Begin

dfm}

Winapi.Messages,
Vcl.Graphics,
System.Hash;

Unit HashingWithSHA256Unit;
Interface

System.SysUtils,

Vcl.Controls, Vcl.Forms,

Class (TForm)

mbText TMemo;
mbSHA256HashValue TMemo;
1b1SHA256HashValue TLabel;

Procedure mbTextChange (Sender

End;

TfrmSHA256HashingOfText;

mbSHA256HashValue.Clear;
mbSHA256HashValue.Lines.Add (THashSHA2.GetHashString (mbText.Text)) ;

End;

TObject) ;

Table 34.7 HashingWithSHA256 Unit.pas

System.Variants,
Vcl.Dialogs,

TObject) ;

Simulating a blockchain in Delphi
Figure 34.12 shows a simulated blockchain created in Delphi in which eleven blocks are linked by a backward chain.

Start a new multi-device application New|Multi-Device Application|Blank Application.

Save the project as BlockChainProject.dpro7j and its unit as BlockChainUnit.pas in folder

BlockChainProject.

(® BlockChain - Z:\ProductionChapters\DelphiBook\Code\Chapter34\BlockChal 2\De - m] x

Block # Data Hash of Previous Block TimeStamp Hash of Current Block
a Chapter 2 Starting Programming 0000000000000000000000000000000000000000000000000000000000000000  27/03/2021 10:50:36 b96Eed2aeT74fdeal373esddlefbelaf043d026ce530614582553245db084feTAf
1 Chapter la Delphi IDE b%&8e92aeT4fdeal3T3eeldefbelat043d026ce530814582553245db0B4feT4E  28/03/2021 10:50:36 €a1098554de7e028a1874c9953d3d4bb9865fa8cEET47aT7531a4c25¢cT1l8allE
2 Chapter 1b Delphi IDE €al093554de7e028a1874c9953d3d4bb3865fa8cf68747a7531ad4c25¢cT18alle  29/03/2021 10:50:36 b8%e9ad98394L6deal302a21795e25bcfd3728331edTE4613e70050648655€bCS
3 Chapter 3 Programming constructs b39%e9ad36394f6dea302a21795e25bcfd3728331ed7£46132700506486ff6bca  30/03/2021 10:50:36 c©1337453df79fca760b66f7c56205675784dfcT71076%efc03aeedaT15454bed6
4 Chapter 5 Arithmetic operations c©1337453df79fcaT60b66f7C56205875784dfcT710763efc03aeedaT15454be86 31/03/2021 10:50:36 eflece714718ch361260ac08d2eeedlcOdeeaThlea5f2fed6e78928730498 da
5 Chapter 4 Introducing data types eflece714713cb3€61260aclBd2eeedlcldceaTbleesf2fedée78928750498fda 01/04/2021 10:50:36 ab%c4aBc0d7310a13d148e5£37282fb05cf0006£684ce3e235e73ed2bSc08Ba2
13 Chapter 10 String-handling operaticns a&9c4a8c0d7310a13d148e5£37282fp05c0006£6E4ce3e235e73ed2b5c06EBaZ  02/04/2021 10:50:36 918£46ccd0d28bd99£2279Ec19df1£5224£738050ed225a2003dbE1cl8 1cbla
7 Chapter & Pointers and dynamic memory 91E£46cc40d28bd99f£227%Ecl9df1£5224£738050ed22fa2003dbE1cleflchia  03/04/2021 10:50:36 439626507 72e4105876d4711dc30b1c328b4ead3£7227903dcE1d39dbd14ed 05
a Chapter 9 Exception handling 4396e690772241058764711dc90b1c328bdead3f7227903dc81d39dbd14ed905  04/04/2021 10:50:36 8e2e8cedf0448c4c026c45203392£d0a5£1011ced57d375¢c931031f0dbb 2287
9 Chapter E Boolean operations Be2eBcedf0449c4c026c45203892£d085££011ced57d375c931b31£0dbbi2e87 05/04/2021 10:50:36 6846aff92bdcébdefal7282e9dd35feadB1431bd927e44bcddc1b5a5133a122d
10 Chapter 7 Relational operators €846aff92bdcebiefal7282e9dd35feadt1431bd927e44beddec1b5a5133a122d  06/04/2021 10:50:36 beaff45dE99303bd38£92b14bf6T7Ec040829£34b956d25590216c991a50163447

Lead Data From Text File

Validate Data

Calculate Hashes Again

File name = DataForBlockchain.txt

Figure 34.12 Simulated blockchain - BlockchainProject.exe

Add the following components to the form:

2 x TLayout
3 x TButton
1 x TLabel

1 x TGrid

1 x TFDMemTable(an in-memory dataset)

1 x TOpenDialog

Configure and rename these as shown in Figure 34.12 and Figure 34.13.

Set Align property of ButtonsLayout to Bottom.

Set Align property of GridLayout to Client.

Set Align property of Grid1 to Client.

Set Width property of 1b1TextFileName to 753 and Text property to empty

string.

Use TClientDataSet instead
for VCL applications

Structure

Ve 4 ¢

] frmBlockChain
¢h BindingsList1
> &g BindSourceDEB1
= ButtonsLayout
e btnCalculateHashesigain
A btnloadDataFromTextFile
& btnValidateData
ake IblTextFileMame
E& FDMemTahble
GridLayout
B Grid1
¢}y LiveBindings
OpenDialogl

Figure 34.13

fe
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Select FDMemTable|Fields then right click Fields to bring up window 7, FDMemTable
shown in Figure 34.14. & Aggregates
Click New Field option to bring up the New Field window shown in & Constraints
Figure 34.15. &y FieldDefs

Ficp
Enter the name Index for the Name field and Integer for the Type field. i | IZ Add fields...
n
Click OK. &, Ind Mew field...
Repeat to create four more new fields with name and type as follows = Gridl4 Add all fields
. - 1 Gari
pata - String o
* HashOfPreviousBlock - String &y LiveBi
. + Lin Stay on Top
* TimeStamp - DateTime
* HashOfCurrentBlock - String d |l Dockable

The name assigned to each field is the field’s DisplayLabel property Fl'gurg 34.14 Fields popup window
value whilst the actual field name is a
concatenation of FDMemTable and name - -~
. . Field ti
see Figure 34.16 and the Object Inspector. SR
¢ Mame: | | Component: |
Right click in the grid area of the form Type: | <] s ]
to bring up the window shown in Figure _
Field type

34.17. (® Data () Lookup () Agaregate

Edit " 1 O caladated () InternalCalc

Zrofit ' Lookup definition

Bind Visually...

Columns Editor...

Quick Edit..

Position > !

Flip Children » Cancel Help

Tab Order... N N N

T Figure 34.15 New Field window

Hide Non-Visual Components Ctrl+H —

Revert to Inherited Ed FOMemTable

Add to Repository... My Aggregates

lisuga=glexe i Constraints

i i & FieldDefs
Edit Custom Style... -
Edit Default Style.. v& ——
% 0 - Index {FDMemTablelndex}
Figure 34.17 %% 1 - Data [FDMemTableData}

Click Bind Visually... option to bring up the % 2 - HashOfPreviousBlock {FDMemTableHashOfPreviousBlock}

% 3 - TimeStamp {FOMemTableTimeStamp}
% 4 - HashOfCurrentBlock {FDMemTableHash Of CurrentBlock}

Figure 34.16 The five fields of FDMemIuble

LiveBindings Designer window shown in
Figure 34.18 (without the connections between
FDMemTable and Gridl).

Click and hold the mouse button down on the Index field of FDMemTable.

Drag the mouse to the * field of Grid1 and release the mouse button. A connecting line with an arrowhead at each
end is created anchored at one end to the Index field of FDMemTable and at the other end to a newly created field

Column[0]. Repeat for the other fields of FDMemTable to add four more connecting lines.

Figure 34.19 shows the user interface after connecting FDMemTable to Gridl. Note that LiveBindings Designer
has added two new components to manage the connection, BindingsListl and BindSourceDB.
Save All (SHIFT+CTRL+S).
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Add the private section to the class definition TfrmBlockChain as shown in Table 34.8 - page 560.
Place the cursor in CalculateHashes and press Shift+Ctrl+C to create the skeleton for this procedure in the

Implementation section.

LiveBindings Designer p X
BlockChain - Default Layer W Layers +

e

i

Text

et
= Index =7} P Column[0]
B85 | HashOfPreviousBlock g P Column[2]
B% TimeStamp ek = Column[3]
HashOfCumentBlock = Column[4] -

Figure 34.18 LiveBindings Design window

BlockChainUnit %

Style: ‘ BE Windows V| View: ‘fMaster

Index Data HashOfPreviousBlock TimeStamp HashCOfCurrentBlock

&

BindingsList1

FDMemTable

o

2]
Ca
BimdSourceDB1

Figure 34.19 Design
View of User Interface
after using LiveBindings
Designer

Define the constant cnstGenesisBlockAddress then add the code shown in Table 34.8 to the body of
procedure CalculatesHashes. Add System.Hash to the Uses clause in the Interface section.

Double click button Load Data From Text File to create an event handler. Add the code shown in Table 34.9
to its body - page 561. Add System.I0Utils to the Uses clause in the Interface section.

Double click the OnCreate field in the Events page of frmBlockChain to create an event handler FormCreate.

Add the code shown in Tuble 34.17 to the body of this event handler - page 562.

Select Grid1 in the Object Inspector, open the LinkGridToDataSourceBindSourceDBl - Figure 34.20.
Click on the ellipsis (...) field of the Columns property to bring up the editing window shown in Figure 34.21.
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Page references to update

Select each column in Figure 34.21 in turn and edit the Object Inspector 2 %
column in the Object Inspector as shown in Figure 34.22,  Grd1 T6id
. Properties Events pe
Use the following values perties — :
0 - Index LinkGridToDataSourc  LinkGridTeDataSourceBindSourceDB1 f‘
Alignment taCenter Autohctivate True
TextWidth 8 Category Quick Bindings
1 - Data Columns (TLinkGridToDataSourceColumns)
Alignment taleftJustify DataSource BindSourceDB1
TextWidth 44 DefaultColumnW 64
2 - HashOfPreviousBlock GridControl Grid1
Alignment taCenter Figure 34.20 Object Inspector for Gridl
TextWidth 68 G T, o w
3 - TimeStamp S o
Alignment taCenter 5 X7 | oo
TextWidth 22
4 - HashOfCurrentBlock 0 - Index
Alignment taCenter 1-Data
TextWidth 68 2 - HashOfPreviousBlodk
. . 3 - TimeStamp
Select FDMemTable|Fields - Figure 34.23. 4 - HashofcurrentBlock

Select cach column in Figure 34.23 in turn and Figure 34.21 Editing LinkGridToDataSourceBindSourceDB1.Columns
edit the column in the Object Inspector as shown in

Figure 34.24. Object Inspector 2 =
LinkGridToDataSourceBindSourceDB1.Columns[2] TLink!
Use the following values

0 - TIndex Properties  Events o
Alignment taCenter Alignment taCenter
TextWidth 8 ColumnStyle (default)

1 - Data CustomFormat
Alignment taLeftJustify CustomParse
TextWidth 44 DecimalDigits 2
Size 44 Blockchainproje X Header HashOfPreviousBlock

2 - HashO?PreviousBlock MemberMame HashOfPreviousBlock
2:;3;?:2; chenter Blockchain is valid! ReadOnly [] False
Size 64 ShowTheousandSe |:| False

3 - TimeStamp TextWidth 78
Alignment taCenter o Visible True
TextWidth 22 . .. . .

b ehOCurrentBlock Fiqure34.25 Figure 34.22 Editing Column|[2] - setting TextWidth to 78
Alignment taCenter Structure
TextWidth 64 B 4T
Size 64 — buLUELayLLL

E& FDMemTable

Double click button validate Data to create an event handler. &, Agoregates

Add the code shown in Tuble 34.11 to its body - page 562. iﬁ”:;’:;”“
1€l s
Double click button Calculate Hashes Again to create an &, Fields
. . %O- Index {FDMemTablelndex}
event handler. Add the code shown in Table 34.9 to its body - 8 1 - Dota (FOMemiTableDate]
Page 56 1 4, 2 - HashOfPreviousBlock {FDMemTableHashOfPreviousBlock!
' 3 - TimeStamp {FDMemTableTimeStamp}
¥
Cha.nge the frmBlockChain properties as follows %% 4- HashOfCurrentBlock {FDMemTableHashOfCurrentBlock}
Caption = 'BlockChain' Figure 34.23 Structure window for FDMemTable Fields

ClientHeight = 340
ClientWidth = 1431

Save All (SHIFT+CTRL+S).

Object Inspector
FDMemTableHashOfPreviousBlock TStringField

Properties  Events

Download DataForBlockchain. txt. - Tuble 34.10. Alignment taleftlustify
Click Run (F9) to build and run the application BlockChainProject. AutoGenerateValue arhone
ConstraintErrorMessage )
Click Load Data From Text File button and locate and load CustomConstraint Fiqure34.24
DataForBlockchain.txt. Figure 34.12 shows the result. DefaultExpression
. . . . DisplayLabel HashOfPreviousBlock
Click validate Data button to validate the blockchain - Figure 34.25. DisplayWidth 64
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Unit BlockChainUnit;

Interface

Uses
System.SysUtils,
FMX.Controls,
FireDAC.Stan.Param,
System.Rtti, FMX.Grid.Style,

System.Types,
FMX.Forms,

System.UITypes,
FMX.Graphics,
FireDAC.Stan.Error,
Data.Bind.EngExt,

System.Classes,
FMX.Dialogs,
FireDAC.Dats,

System.Variants,
FireDAC.Stan.Intf,
FireDAC.Phys.Intf,
Fmx.Bind.DBEngExt,

System.Bindings.Outputs,

FMX.Layouts, Data.Bind.D

FireDAC.Comp.DataSet, Fi
Type

TfrmBlockChain = Class (T

FDMemTable

Gridl

Fmx.Bind.Editors,
BScope,
reDAC.Comp.Client,

Form)

TGrid;

FMX.Controls.Presentation,

Data.Bind.Components,

System.Hash,

TFDMemTable;

FMX.ScrollBox,
FMX.Types,

BindingsListl
BindSourceDB1
ButtonsLayout

btnCalculateHashesAgain

btnValidateData

LinkGridToDataSourceBindSourceDB1l

FDMemTableIndex
FDMemTableData

FDMemTableHashOfPreviousBlock

TBindingsList;
TBindSourceDB;
TLayout;

TButton;
TButton;

TIntegerField;
TStringField;
TStringField;

btnLoadDataFromTextFile:

TButton;

FDMemTableTimeStamp

TDateTimeField;

OpenDialogl
1blTextFileName

TOpenDialog;

TLabel;

System.IOUtils,
FireDAC.Stan.Option,
FireDAC.DApt.Intf,
Fmx.Bind.Grid,
Data.Bind.Grid, FMX.StdCtrls,
FMX.Grid, Data.DB,
FMX.Memo,

FMX.Memo.Types, FMX

TLinkGridToDataSource;

FDMemTableHashOfCurrentBlock

TStringField;

GridLayout

TLayout;

.Edit;

Procedure

Procedure

Procedure

Procedure

Private
CalculatingHashesFlag Boolean;
Procedure CalculateHashes;

End;

btnCalculateHashesAgainClick (Sender TObject) ;
btnValidateDataClick (Sender TObject) ;
btnLoadDataFromTextFileClick (Sender TObject) ;
FormCreate (Sender TObject) ;

Var
frmBlockChain
Implementation
{SR *.fmx}
Const
cnstGenesisBlockAddress = '0000000000000000000000000000000000000000000000000000000000000000";
Procedure TfrmBlockChain.CalculateHashes;

Var
strString,
Begin

If CalculatingHashesFlag
Then Exit;
CalculatingHashesFlag :=
FDMemTable.First;
FDMemTable.BeginBatch;
LinkGridToDataSourceBindSourceDBl.Active :=
Try
While Not FDMemTable.Eof
Do
Begin
If

TfrmBlockChain;

strHash, strPreviousHash String;

True;

False;

(FDMemTableHashOfPreviousBlock.AsString = cnstGenesisBlockAddress)

Then strPreviousHash
Else strPreviousHash

:= cnstGenesisBlockAddress
:= strHash;

strString :=

strHash :=

FDMemTableIndex.AsString + FDMemTableData.AsString + strPreviousHash
+ FDMemTableTimeStamp.AsString;
THashSHA2.GetHashString (strString) ;

FDMemTable.Edit;

FDMemTableHashOfCurrentBlock.AsString :=

FDMemTableHashOfPreviousBlock.AsString :=

FDMemTable.Post;

FDMemTable.Next;
End;

Finally
CalculatingHashesFlag :=
FDMemTable.EndBatch;
LinkGridToDataSourceBindSourceDBl.Active :=

End;

End;

strHash;
strPreviousHash;

Table 34.8 Part 1 of BlockChainUnit.pas

False;

True;
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Procedure TfrmBlockChain.btnCalculateHashesAgainClick (Sender
Begin
CalculateHashes;
End;

TObject) ;

Procedure TfrmBlockChain.btnLoadDataFromTextFileClick (Sender
Var
strlistLines TStringlList;
intIndex: Integer;
dtDateTime TDateTime;
FileName String;
CurrentDir String;
Const
cnstDataFileName =
Begin
CurrentDir := GetCurrentDir;
frmBlockChain.Caption := 'BlockChain - '
If OpenDialogl.Execute
Then FileName := OpenDialogl.FileName
Else FileName := CurrentDir + '\' + cnstDataFileName;
If TFile.Exists (FileName)
Then
Begin
FDMemTable.First;
FDMemTable.BeginBatch;
CalculatingHashesFlag :=

TObject) ;

'DataForBlockChain.txt';

+ CurrentDir;

True;

End;

LinkGridToDataSourceBindSourceDBl.Active := False;
Try
FDMemTable.EmptyDataSet;
strlistLines := TStringList.Create;
Try
strlistLines.LoadFromFile (FileName) ;
dtDateTime := Now;
For intIndex := 0 To strlistLines.Count - 1
Do
Begin
FDMemTable.Insert;
FDMemTableIndex.Value := intIndex;
FDMemTableData.AsString := strlistLines[intIndex];
dtDateTime := dtDateTime + 1;
FDMemTableTimeStamp.AsDateTime := dtDateTime;
If intIndex = 0
Then FDMemTableHashOfPreviousBlock.Value := cnstGenesisBlockAddress;
FDMemTable.Post;
End;
Finally
strlistLines.Free; . .
Sl Table 34.9 Part 2 of BlockChainUnit.pas
Finally
FDMemTable.EndBatch;
LinkGridToDataSourceBindSourceDBl.Active := True;
CalculatingHashesFlag := False;
End;
CalculateHashes;
1lblTextFileName.Text := 'File name = ' + ExtractFileName (FileName) ;
End
Else ShowMessage('File with name ' + FileName + ' doesn''t exist');

Now change the data, e.g. 'Chapter 1b Delphi IDE' to 'Chapter 1 Delphi IDE'.

Click validate Data button to validate the blockchain but the blockchain is
no longer valid - Figure 34.26.

Blockchainproject x
Click calculate Hashes

) Stored hash in #3 does not match recalculated hash for block #2!
Again button to regenerate the

blockchain hashes. Now confirm o

that the blockchain is valid again. .
Figure 34.26

Chapter 2 Starting Programming
Chapter 1a Delphi IDE

Chapter 1b Delphi IDE

Chapter 3 Programming constructs
Chapter 5 Arithmetic operations
Chapter 4 Introducing data types
Chapter 10 String-handling operations
Chapter 6 Pointers and dynamic memory
Chapter 9 Exception handling
Chapter 8 Boolean operations
Chapter 7 Relational operators

Table 34.10 DataForBlockchain.txt
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Procedure TfrmBlockChain.btnValidateDataClick(Sender : TObject);

Var
strString, strHash : String;
intIndex : Integer;

Begin

FDMemTable.First;
FDMemTable.BeginBatch;

Try
While Not FDMemTable.EOF
Do
Begin
strString := FDMemTableIndex.AsString + FDMemTableData.AsString
+ FDMemTableHashOfPreviousBlock.AsString + FDMemTableTimeStamp.AsString;
strHash := THashSHA2.GetHashString(strString);
FDMemTable.Next;
If (Not FDMemTable.EOF) And (FDMemTableHashOfPreviousBlock.AsString <> strHash)
Then
Begin
intIndex := FDMemTableIndex.Value;
ShowMessage (Format ('Stored hash in #%d does not match recalculated hash for block #%d!',
[intIndex, intIndex - 1]));
Exit;
End;
End;
Finally
FDMemTable.EndBatch;
End;
ShowMessage ('Blockchain is valid!'); Table 34.11 Part 3 of BlockChainUnit.pas
End;

Procedure TfrmBlockChain.FormCreate (Sender : TObject);

Begin
FDMemTable.Active := True;
LinkGridToDataSourceBindSourceDBl.Columns[0] .Header := Format ('$7s', ['Block #']); //Centre heading
LinkGridToDataSourceBindSourceDBl.Columns[1l] .Header := Format ('%42s', ['Data']); //Centre heading
LinkGridToDataSourceBindSourceDBl.Columns[2] .Header := Format('%73s', ['Hash of Previous Block']);
LinkGridToDataSourceBindSourceDBl.Columns[3] .Header := Format ('%22s', ['TimeStamp']):;
LinkGridToDataSourceBindSourceDBl.Columns[4] .Header := Format ('$73s', ['Hash of Current Block']);
End;

End.

BlockChainProject.exe calculates the hash of the current block as follows

strString := FDMemTableIndex.AsString + FDMemTableData.AsString + strPreviousHash
+ FDMemTableTimeStamp.AsString;
strHash := THashSHA2.GetHashString(strString);

This differs from how Bitcoin generates the hash for the current block which is as follows
Block hash = SHA-256 Hash(Hash of previous block + Transactions hash + Timestamp + Nonce)

BlockChainProject.exe uses the block’s index instead of a nonce. This makes calculating the hash very quick.
In Bitcoin, in order to deter miners from attempting to rewrite transactions in previous blocks, the opposite is
true. If a miner alters a block before the current block, let’s say the sixth block back, then the miner will have to
recalculate the hashes for the following five blocks. But in the time it will take the miner to do this, assuming that
the hardware used is not more than five times faster than other miners’ hardware, five new blocks can be added by

other miners, thus defeating the miner’s attempt to alter the chaining without being detected.

Miners have to calculate the nonce - a number that is used only once - that when concatenated with the transaction
data, timestamp and hash of previous block generates a hash with a specific number of leading zeros (the greater

the number of zeros the more difficult the task). The only way to do this is by brute force, incrementing the nonce
value in a loop until the required number of leading hexadecimal zeros is reached. Tuble 34.12 illustrates the
principle using a simple message string 'Hello!" concatenated with a series of numbers starting with 0. The SHA 256
column shows the hash result expressed in hexadecimal. Note that none of the hash values has leading hexadecimal
zeros. Figure 34.9 shows a block of bitcoin with a hash containing 8 leading hexadecimal zeros, i.e. 32 leading

binary digits (this block was added in 2009).
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Message + Nonce SHA 256 Hash
'Hello!' 5e9f00calf8a276af5de8b6373cctfd498ff22926c518721b75c29%9ae6a73d5d6
'Hello!O' a4dde72d413d81baf052b997e3£f1e389600df10bfe68ffd965cd6cf31bebblcO
'Hello!l" d4004ddb95a8d91cb70211c4d66cfd52e£fa947843c99c088138a49cedebac019
'Hello!2' 32204efel7020ee4£5408d5c6729d£928a894ea474c517£7de8b55¢c3£9507402

'Hello!209234516784532198765"

'Hello!2092345167845321987651
73761095678428976577002267512
65432789

330b0£fe5d1a886539705b7ee01c6b922405567aedad5fea8e591caf477fa5fof
798d9£61396d906144d499d7c1b534ad52eb9d95£d41£82abd015fb58a9b79%a4

Table 34.12 Hashes for a simple message string ‘Hello!” concatenated with a nonce
The nonce determination is expressed slightly differently in reality.
The nonce is that value that generates a hash interpreted as a number which is numerically smaller than the target
called the difficulty target.

The current target value using SHA 256 is a number in the range

5 (256-1-k) ¢ 5 (256-k)

-1 inclusive
where k is the number of leading zeros. SHA 256 uses 256 bits.
Table 34.13 illlustrates the possible ranges if k = 1 for 4, 5, 6 and n bits.

Total Smallest binary Largest binary Smallest denary Largest denary
number | number with one | number with one | number with one | number with one
of bits leading zero leading zero leading zero leading zero
4 0100 0111 4 7
5 01000 01111 8 15
6 010000 011111 16 31
n 01000...0000 01111...1111 2(n=2) p=L) — g

Table 34.13 Range of numbers with a single leading zero for a given number of bits

Suppose the current number of leading zeros that is required is set at 44, i.e. k = 44 (the year is currently 2021).

There are approximately 2212 - 2211 = 9 x 2211 = 3 x 10% different target numbers between 2211 and 2212 - 1, i.e for k = 44.
But there are 225 different numbers given 256 bits, i.e. = 1077, S211

The fraction of these which lie in the range for k = 44 is therefore ~3x10713,

2256
This means that roughly 4 x 10!2 hashes must be calculated on average to find a hash less than the target value.
If the hardware is capable of executing 101 searches of block hash space per second, locating a hash which satisfies

the target will take 400 seconds on average or 7 minutes.

In bitcoin, the time-consuming and energy-expensive nonce calculation outlined above generates information
that meets the specified conditions when successful. This information is taken as a proof that work has been done
called Proof of Work (PoW) to solve the challenge. The purpose of PoW (Proof-of-work algorithm) is to check if
calculations were indeed conducted during the creation process for a new block of cryptocurrency. The checking
process or verification can be done very quickly. (The term mining is used by analogy with mining for precious

metal - correct nonces are 'rare’ and costly to produce).’

3 The two example programs on bitcoin were inspired by a webinair given by Jim McKeeth
http://delphi.org/2018/02/delphi-and-the-blockchain-more-than-just-bitcoin-and-cryptocurrency/
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Simulating a blockchain mining in Delphi
Start a new Windows VCL application.

Save the project as BlockChainMiningProject.dproj and its unit as BlockChainMiningUnit.pas in folder

BlockChainMIningProject.
Add the following components to the form:

¢ 3 x TPanel - rename TopPanel, MiddlePanel, BottomPanel, clear their captions.

¢ 1xTListBox - add to BottomPanel, rename 1bxNonceTargetHash.

* 1xTMemo - add to TopPanel, rename mbMessage clear Lines property.

* 1 xTButton - add to MiddlePanel, rename btnMine, set Caption property to Mine.

e 2xTLabel - add to MiddlePanel, rename the first 1b1Dificulty, set its Caption property to
Difficulty. and rename the second 1b1ElapsedMilliSeconds, set its Caption property to the
empty string

e 1 x TSpinEdit - add to MiddlePanel, rename spbDificulty, set MinValue property to 1 and
MinValue property to 5.

* 1 x TSplitter /TOpPanel
Configure and rename these as shown in (@ vine: ‘mbMessage / =EE=]
Figure 34.27.
Set Align property of Toppanel to Top. IblElapsedMilliseconds Spliteerl

Set Align property of splitterl to

Top.

Set Align property of MiddlePanel to

Top. MiddlePanel

Set Align property of BottomPanel to IbxNonce TargetHash
Client.

Set Align property of mbMessage to BottomPanel

Client.

Set Align property of

1bxNonceTargetHash to Client. Figure 34.27 BitCoinMiningProject User Interface

Double click button btnMine

. Viner - o X
to create an OnClick event ®
Hello!
handler. . e y .
Figure 34.28 BitCoinMiningProject in execution
Add the code shown in Tuble
34.14.
Save All (SHIFT+CTRL+S) . Elapsed miliseconds = 376431 Difficulty 5 =
Click Run (F9) to build Nonce = 488391 : Hash = d512126853bb94ba144a8db40fb 1135eadf0dc 422ff97145b89434af58 12b 184 A
Nonce = 486392 @ Hash = dcc11c8b8705e 5afcsdafoadsf9cd0472d59a 183 3a8 1bdaafob 3c07b07dee 53
and run the application Nence = 486393 : Hash = b73ba31eb0af3bad383b70aa0f327dddas60c2964243bf38 1d7d9c339c59d49a

Monce = 486394 : Hash = Ffcbe114707aafcofb79d 17e84ec76ae9ebd 12abata83041bc00e Sfh4b 7332fa
. . . . Monce = 486395 ¢ Hash = 925162296783 7aeb4bbo052fd51d8acdbd8 753086077041 1dfcb 5d3a0a 1bbash
BlockChainMiningProject. |yoncc - 486395 : Hash = bd65d3f9c4ob3668042eada3dsh 185d6356F4f6e 73304595 75759F 13592357
f m f Monce = 486397 ¢ Hash = c364f4a 12307fae632d0042829 12b97a2 7069 2df58c204a0ae9dalce 3929306
1 Monce = 486398 1 Hash = 1fe515085edca4711d68e925% 0592880 79b6 15106 256d6a59 2fc 33448 5feb 7
Tl'y Values ° dl Culty 1o 5 or MNonce = 486399 : Hash = 42e951cfa®315eeb97121176cdb 3f4d6a3b03d 167029215050 1dd 14b3c1158eb

the message 'Hello" MNonce = 486400 : Hash = 6dd718bd7bfa792ff1c1140f823ef8541cb 190933777 73a3d07h 2ba 7554 f66d
g .t Monce = 486401 : Hash = 2597440ac895f33a54903a50087d88eb 17f6 200 384db 16 7fe 34b 24929 12a5d4

MNonce = 486402 ¢ Hash = bdcbf770fd789a8d05c28b39dde 30 115f6cc5888fd9fa08a2a 1b4b0 2datcde32
Figure 34.28 shows the outcome  |Nonce = 485403 : Hash = 2462 10beddd84c5652f24e Jec 1350a0e828ab640220a81 112 3900c6ef21973
= MNonce = 436404 : Hash = a%a7bd482c8173bda%0e43b26f0349d3345117797dc27dc6f9a23f 7539258069

. B MNonce = 486405 : Hash = d2cdffiebd64f4e55d41ed 1besbb33c820ddb4df0Ne 7f5bf241d36 2c2f5077a1
for difficulty 5 which takes 6 Nonce = 486406 : Hash = e704e75f3c28433c58e073d 1584 1= 7 1030 233532402 594dBed5 329102991
. . MNonce = 486407 ¢ Hash = 3393b838416cb74fh2a 1548 12ac09533000dd440a9f8 57 2af496d6 74fe 5ad 13
minutes appr0x1mately to ﬁnd a Nonce = 486408 : Hash = 8341c7443e 275e 7o6feafadtatae 2 14d9cd9363 1abc4a 369c8b 239428 73b 3

Monce = 486409 ¢ Hash = d40c19d 1505eed3 1443050 leded 138bd 792d 3282809989 3a0aea6d3d 170 128
solution. Nonce = 486410 : Hash = 00000d455f27a453caBa Fced8204420f4c080f2cf0e 15b0dashf3f3a6647d508
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Unit BitCoinMiningUnit;
Interface
Uses
Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, System.Classes, Vcl.Graphics,
Vcl.Controls, Vcl.Forms, Vcl.Dialogs, Vcl.StdCtrls, Vcl.Samples.Spin,
Vcl.ExtCtrls;
Type
TfrmMiner = Class (TForm)
TopPanel : TPanel;
mbMessage : TMemo;
BottomPanel : TPanel;
Splitterl : TSplitter;
lbxNonceTargetHash : TListBox;
spbDifficulty : TSpinEdit;
1blDifficulty : TLabel;
MiddlePanel : TPanel;
btnMine : TButton;
lblElapsedMilliseconds : TLabel;
Procedure btnMineClick (Sender : TObject);

End;
Var
frmMiner: TfrmMiner;
Implementation
{$R *.dfm}

Uses System.Hash, System.Diagnostics;
Procedure TfrmMiner.btnMineClick (Sender : TObject);
Var
strHash: string;
intNonce: Integer;
intDifficulty: Integer;
StopWatch : TStopWatch;
Begin
lbxNonceTargetHash.Clear;
intNonce := 0;
intDifficulty := Trunc (spbDificulty.Value) ;
StopWatch.Start;
Repeat
strHash := THashSHA2.GetHashString (mbMessage.Text + intNonce.ToString) ;
lbxNonceTargetHash.Items.Add (Format ('$s = %d : %$s', [‘Nonce’, intNonce, ‘Hash = ' + strHashl])):;
Inc (intNonce) ;
Until strHash.Substring (0, intDifficulty)

Table 34.14 BitCoinMiningUnit.pas

StringOfChar ('0', intDifficulty);

lbxNonceTargetHash.ItemIndex := lbxNonceTargetHash.Items.Count - 1;
StopWatch.Stop;
1blElapsedMilliseconds.Caption := 'Elapsed milliseconds = '

+ IntToStr (StopWatch.ElapsedMilliseconds) ;
End;
End.
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Hash Tables
Tables

Using a table to store records
A table in computer science is a data structure of rows and columns, an example is shown in Tuble 34.15. This table
consists of 4 rows of data in three columns, labelled ULN, Forename, Surname. Each row stores a single record

of three fields containing data for an individual student as follows:
* students unique learner number (ULN) consisting of eight digits, e.g. 34567890
* Forename
* Surname

An individual record is uniquely identified by its key field, ULN.

The rows of this table are indexed with the first row that contains a student record being labelled with index 0, the

second with index 1, and so on.

ULN Forename Surname
0 34567890 Fred Bloggs
1 90002789 Mary Smith
2 74432167 Ahmed Khan
3 24567813 Sarah White

Table 34.15 Student records stored in a table

This table will occupy a part of the computer’s RAM (main memory). It can also be stored permanently in backing
store or secondary storage, e.g. magnetic disk. However, to be searched or manipulated, it must first be copied from

secondary store to RAM.

Searching the table for a record
The table could be searched for a particular record by starting at the row labelled with index 0 and scanning the
entries in turn until the record is found if it is present, or the end of the table is reached. This is known as linear

search which is one of several ways that an existing record can be ‘looked up’.

Inserting a new record into the table
Table 34.16 shows a table similar to Tzble 34.15 but this table has three empty rows following the four rows of
data. A new record could be inserted in the first empty row, a second new record in the next row and so on until the

table is full.

oo b~ WON -~ O

ULN Forename Surname
34567890 Fred Bloggs
90002789 Mary Smith
74432167 Ahmed Khan
24567813 Sarah White

Table 34.16 Student records stored in a table with room for new records
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Deleting a record in the table
The row containing the student record to be deleted is located by searching from row 0. Once found, the data in the
row is deleted. To avoid gaps appearing in the table, the occupied rows following this row are moved up to remove
the gap.

Limitations of this type of table and table access

A problem surfaces with the operations of searching, inserting and deleting described above when the table contains
a large number of records, e.g. 10,000. It just takes too much of the computer’s time to perform these operations.
One solution is to use a hash table based on a well-chosen hash function.
Hash table

A hash table resembles an ordinary table as described above but differs in the

Key concept

method used to access the rows of the table. Hash table:

The table gets its name from the
A row of a hash table is accessed directly when looking up, inserting and deleting . - d usge d to determine the

a record, i.e. it does not start from row 0 every time but instead goes directly to fow {0 use.

the required row. Movement of records when deleting a record is also eliminated. ~ The hash value generated by

applying a hash function to a

Table 34.17 shows a hash table that has gone from being empty to containing 3 Key is the table index where the

records located in three different rows with indices, 2, 5, and 6, respectively, as record with this key should be

input data. stored if the row is free.
ULN Forename | Surname

0
24567815 Sarah White — 1

2 190002789 | Mary Smith
74432167 Ahmed Khan |_>3
90002789 Mary  Smith 4

L» 5 |74432167 | Ahmed Khan
——» (6 | 24567815 | Sarah White

Table 34.17 Hash table storing three student records

The table gets the name hash because of the method used to generate the address or row number. A randomising
function called a hash function is applied to the record’s key, in this case the 8-digit unique learner number or
ULN, to map the possible 8-digit ULN values into a much smaller range of values, the possible row numbers. This

process is known as hashing.

If the ULN values were used directly as specifiers of row addresses, we would have to accommodate addresses
covering all possible values of an 8-digit number, 108 addresses in total, even though only a small subset of ULNs

might be required, e.g. those used in a particular school.

For ease of understanding, the number of rows for the table in Table 34.17 has been made small intentionally at
seven, and labelled 0, 1, 2, ..., 5, 6.
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Hash function
The hash function takes as input the record’s key (hash key) and outputs the row address of the row for this record.
The output is called the hash value or hash.

In our example, the hash value ranges from 0 to 6 for the seven rows of the given table. A hash function, H, that
will map 8-digit ULNs to the set
{0, 1, 2, ..., 5, 6} is shown below

H(ULN) = ULN Mod 7
Mod is the modulo arithmetic operator which calculates the remainder after integer division (see Chapters 5 and 33 ).

Table 34.18 shows three possible values of ULN being mapped to 2, 5 and 6 respectively e.g. 90002789 when
divided by 7 gives 12857541 with a remainder of 2.

Key concept

ULN H(ULN) _
90002789 | 2 ?“S;‘ f‘“f°"°;‘ N
s a function H, applied to a key
LEIE 21167 S k, which generates a hash value
24567819 6 H(k) of range smaller than the
Table 34.18 Some hash values produced domain of values of k,
by hash function H applied to ULN keys “&
H : {00000000..99999999}
Questions — {0..6}
c Calculate H (ULN) for the following ULNs Key concept
(a) 31258745 (b) 62517493 (c) 49981627
Hint: The scientific mode of Microsoft Windows calculator has a Mod Hash key:

Is the key that the hash function

operator. is applied to.

Simple hashing functions Key concept

Hashing and hash tables are a way that memory locations for records can be

assigned so that records can be retrieved quickly. i

The process of applying a hash
A hashing function must be relatively quick to compute whilst at the same time function to a key to generate a

generating an even spread of values for the given inputs, the keys. hash value.

Another way that the latter can be expressed is that each hash value generated by

the hashing function should be equally probable.
Achieving this depends on both the particular key values being hashed, and the particular hash function employed.

The value of N in modulo N (e.g. Mod 7) is chosen to be prime because this can contribute to producing an even

spread of hash values.

One simple hash function that attempts to achieve these objectives, sums the squares of the ASCII codes of each

character of Key, as shown in Tuable 34.19 in pseudo-code.
The ord function returns the ASCII code of a given character,
e.g. Ord('A'") = 65.

The individual characters of Key are accessed using array indexing starting at 0, e.g. Key [0] accesses the first

character in the string.
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The algorithm generates hash values in the range 0 ... 522 because Sum is Modded with 523, a prime number.

Suppose that Key stores a string, then the steps to convert Key into a storage-address returned in Hash are as

follows:

Sum « O

For i « 1 To Length (Key)
Sum — Sum + Ord(Keyl[i])

Endfor

Hash « Sum Mod 523

* 0rd (Key[i])

Table 34.19 Hashing algorithm that calculates a storage address in range 0 to 522

Looking up a record in a hash table
A record with a given key can be looked up by just calculating the hash of its key

and checking the associated storage location.

English-French dictionary example

In this example, English words and their French equivalents are stored in records
in a hash table, HashTable, using a hashing function, H, based on the hashing
algorithm shown in Tuble 34.19. Each record must have a key field which
uniquely identifies the record. In this case, the key is the English word.

The hashing function, H, assigns hash table memory location H (k) to the record
with key, k.

In our English-French dictionary example, # (k) could be 1 ('BEACH") where
k = '"BEACH' for the record containing the English word 'BEACH' and the

equivalent French word ' pPLAGE .

Information

The term “hash” originates by
analogy with its non-technical
meaning, to “chop and mix”.
Hash functions often “chop”
the input domain into many
sub-domains that get “mixed”
e.g. add the first three digits of
the key, add the last three digits,
concatenate the two resulting
digit strings then map into

the output range by applying
modulo N.

The storage structure, HashTable, that will be used with this address has the following data structure:

THashTableArray = Array[0..522] Of TRecord
Where the data structure TRecord is defined as follows
TRecord = Record
EnglishWord : String
FrenchWord : String
End
Questions
e Calculate H (k) for the following keys, k
(a) PEN (b) CAT (c) NOW (d) WON

(ASCII codes for the characters "A"' . . .

'"Z' map to the range 65 ... 90 - see Chapter 4)
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o Write a program to store English words and their French equivalents in a hash table which is an array or
its equivalent with addresses in range 0 to 522. The English word and its French equivalent should be
stored together in a record or equivalent data structure at an address which is calculated by the hashing
function, H, described above. The table should be initialised so that every key field stores the string '-1"
to indicate that this field’s record has yet to be used to store an English-French word pair. Use your
program to temporarily store the English words, PEN, CAT, NOW and their French equivalents.
(English word with its French equivalent:

PEN - PLUME, CAT — CHAT, NOW — MAINTENANT)

o Extend your program so that after storing the English-French word pairs for PEN, CAT and NOW, the
program uses the hashing function, H, to retrieve the French equivalent when the user enters PEN, CAT
or NOW. Use a loop to enable the user to continue to look up the French equivalent until the user decides

otherwise.

Collisions Key concept

Collision:
English words contain the same letters, but arranged in a different order (NOW A collision occurs when two or

The hash values calculated in Questions 2(c) and 2(d) are identical because the

and WON). So both words hash to the same address. This situation is known asa  more different keys hash to the

collision. Clearly, there is only space at this address for one English-French word =~ %™¢ i vellus, L do el

. table this means a hash value
pait. of a location in the hash table

Collisions can be resolved in two ways: which is already occupied.
1. Store the record in the “next available” empty location in the table, or

2. Store a pointer in each table location that points to a list of records that have all collided at this table

location, otherwise set the pointer value to null.

Method 1 — closed hashing or open addressing
The first way of resolving a collision is to r¢/11s/ which means to generate a new

Key concept

table row address at which to store the English-French word pair.

One rehash method, called linear rehash, calculates a new address by adding one Closed hashing or open

addressing:

to the original address before testing that the location with this new address is . o
Method in which a collision is

empty, e.g. indicated by '-1" in the Englishword field. resolved by storing the record in

The rehash step may have to be repeated until an empty slot is found. the "next available™ location.

To avoid going off the end of the table, the new address is made to wrap around
to the beginning of the hash table, if necessary and assuming there is an empty slot, by using modular arithmetic as

follows:
Repeat

Address « (Address + 1) Mod 523

Until HashTable[Address].EnglishWord = '-1"'

This method is an example of closed hashing or open addressing because other row addresses of the hash table are

open to being used but access to addresses outside the hash table are closed off.
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The table, HashTable, is an array whose addresses run from 0 to 522.

The table is initialised with 523 empty English-French word pair records in which every Englishiord field has the
string '—1" stored in it to indicate that this field is unoccupied and the whole record is empty.

Table 34.20 shows an algorithm expressed in pseudo-code for inserting an English-French word pair into an
initialised HashTable. The English word to insert is supplied in WordInE and its French equivalent in WordIn¥.
Each row of the hash table has space for a record with two fields, Englishword and Frenchword.

Address « Hash (WordInkE)
If HashTable[Address].Key = '-1"'
{-1 indicates field is empty}
Then
Begin
HashTable [Address] .EnglishWord « WordInE
HashTable[Address] .FrenchWord « WordInF
End
Else
If Not (HashTable[Address].EnglishWord = WordInE)
{not already stored}

Then
Begin
{find empty slot)
Repeat
Address « (Address + 1) Mod 523
Until (HashTable[Address].EnglishWord = '-1")

Or (HashTable[Address].EnglishWord = WordInE)
{already stored}
If (HashTable[Address].EnglishWord = '-1")
Then
Begin
HashTable [Address] .EnglishWord — WordInE
HashTable[Address] .FrenchWord « WordInF
End
End

Table 34.20 Hashing algorithm incorporating a linear rehash that inserts an English-French word pair into a hash table
Clearly for this algorithm to work the hash table must have at least one empty row.

Searching for a specific record in a hash table accommodating collisions

Table 34.21 shows an algorithm expressed in pseudo-code that can be used to search for an English-French word
pair in a hash table, HashTable, given an English word stored in the variable WordInE.

The English word may or may not be present in the hash table.

If it is, then its French equivalent is returned in variable, Retrieve otherwise message 'Not found' is returned
in Retrieve.

Clearly for this algorithm to work the hash table must have at least one empty row.

Address « Hash (WordInE)
Found ~ False
Repeat
If HashTable[Address] .EnglishWord = WordInE
Then Found « True
Else Address « (Address + 1) Mod 523
Until Found Or (HashTable[Address].EnglishWord = '-1")
If Found
Then Retrieve « HashTable[Address].FrenchWord
Else Retrieve — 'Not found'

Table 34.21 Hashing algorithm that uses a linear rehash method to search a hash table for the French equivalent of a given English word
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Setting up a hash table that uses closed hashing

Method 1 (closed hashing or open addressing) requires that the number of rows in the table exceeds by about a
third the maximum number of records that will ever be stored in the table. When every record has been stored in
the table, the table should still contain empty rows (i.e. table should never be more than roughly two thirds full). If
this isn’t the case then search times will be extended as will the time to insert new records.

Although this might seem a waste of storage space, there is a very good reason for working in this way. Studies have

shown that the number of collisions depends on

* the hash keys

* the hash function

* the ratio of total number of records to total number of possible locations available to these records in the

hash table.

A perfect hash function hashes all the hash keys to hash values without the occurrence of a single collision.
That is why it is called perfect.
However, finding a perfect hash function is extremely difficult.
The effectiveness of a hash function is very sensitive to the hash key values. These are not always fully known in
advance.
Using a ratio of roughly two thirds for total number of records to total number of hash table locations seems to
minimise collisions for hash functions that are close to perfect. The hash table shown in Tible 34.22 has six student
records and seven rows. One improvement could be to change the number of rows to 9 or even better, 11, a prime

number. Using a prime number for modulo arithmetic helps to minimise collisions.
However, the hash function could be further improved as well as it is far from being perfect.

The aim is to make each hash value generated by the hash function equally likely when the function is applied to

any of the possible hash keys, i.e. no one particular hash value should be more favoured than any other.

ULN Forename Surname

0 34567876 Fred Bloggs

1

2 90002789 Mary Smith

3 64156906 Alex Black

4 24567805 Visha Baal

5 74432167 Ben Brown
6 90002985 Shena Patel

Table 34.22 Hash table with not enough rows to minimise collisions

Questions
e Copy and complete Tuble 34.23.

ULN ULN Mod 7 ULN Mod 11
24567805
34567876
64156906
74432167
90002789

90002985 Table 34.23
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HOW TO PROGRAM EFFECTIVELY IN DELPHI

Questions
e Insert the ULNs from Tible 34.23 into a copy of the hash table shown in Tible 34.24 using the hashing

function,
H(ULN) = ULN Mod 7

The student Forename and Surname fields do not need to be completed.

You should deal with any collision by performing a linear rehash until an empty slot is found.

ULN Forename Surname

o o0 A WO N -~ O

Table 34.24 Hash table
e Insert the ULNs from Trble 34.23 into a copy of the hash table shown in Tizble 34.25 using the hashing

function,
H(ULN) = ULN Mod 11

The student Forename and Surname fields may be omitted for convenience.

ULN Forename Surname

© 00 N O o0 A WO N -~ O

-
o

Table 34.25 Hash table
Explain how the hash table in Tible 34.25 when populated with student records would be used to look up
the forename and surname of student with ULN = 24567805.

Explain how the hash table in Tible 34.24 when populated with student records would be used to look up
the forename and surname of student with ULN = 24567805.

e Why is it necessary to store the key field in a hash table even when an application using this hash table must
already know the value of the key field?

573
Free sample chapter - copyright Dr K R Bond 2021



Investigation

a Devise an experiment to investigate collisions on a hash table that is to store 6000 student records. Use a
random number generator to generate unique student ID numbers. Try different ratios of total number of

records to total number of table rows in the hash table.

o The hash function H that we have used so far is far from perfect for many data sets that we wish to store in a

hash table. Investigate other hashing functions.

Method 2 - open hashing or closed addressing

In this alternative method of dealing with collisions, the hash table is extended to include a pointer field. The
pointer field for each row is initialised to the null pointer value when the table is set up ().

When a collision occurs the colliding record is linked to the corresponding table row by changing the pointer field

of this row to point to the colliding record as shown in Figure 34.29.

ULN Forename | Surname | Pointer

0 | 34567876 Fred Bloggs Null —

1 Null —

2 [ 90002789 | Mary Smith —»| 64156906 | Black | Alex | Null +—
3 | 24567805 Visha Baal Null —

4 Null —

5 | 74432167 Ben Brown Null —

5 Null — Key concept

Figqure 34.29 Hash table that uses open hashing Open hashing or closed
addressing:

Another record colliding with row 2 will be linked or chained to the record of i
In a collision, the other rows of
'Mary Smith' by changing the pointer field of Mary’s record to point to this the hash table are closed to the
record and so on, thus forming a chain of linked records or a linked list. colliding record which must,
Method 2 is called open hashing or closed addressing because locations outside ~ instead, be attached to che
addressed table row in a chain

the table are open for use by the hashing algorithm, i.e. the linked list locations,
or linked list of other colliding

whilst other row addresses are closed off.
records. The table row uses a

Deleting a record pointer field to point to the
Care must be exercised when an entry in a hash table is deleted. linked lis.

Closed hashing

In closed hashing, collisions are resolved by rehashing and storing the colliding record in another row whose table
index is the rehash value.

However, if the entry at the original hash value table index or any of the rehash value table entries are deleted and
the deleted entry remains empty, searching can be stopped prematurely before all potential matching entries have
been examined.

Therefore, a deleted entry must be distinguishable from an entry that has never been used. This requires a special
marker to be present in the key field part of the hash table entry when the entry is not in use. The special marker
will use one value to indicate that this entry has never been used and a different value to indicate that it has been
used but the entry has been deleted.

The special marker values should not use any value that potentially could occur in the key fields of the data set to be

stored in the hash table. A search should now continue until an empty unused slot (indicated by the special marker)

is encountered and not just an empty slot (which might have been used previously).
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HOW TO PROGRAM EFFECTIVELY IN DELPHI

Open hashing

In open hashing, collisions are resolved by chaining the colliding record to the
table entry slot whose index is the hash. Care must be taken when deleting the

record in the table row when the row has a nonempty chain.

Information

The definitions assigned to the

terms closed hashing and open

A special marker can be left in the key field to signal that there is at least one hashing have been interchanged

record in a chain (linked list) attached to the row so that a search does not fail to over the years so care needs to

look at the chain when seeking a match.

There are at least two alternatives that do not rely on a special marker.

be exercised when interpreting
them. The key is to focus on

concept/method not name

In alternative one, the search examines the pointer field of an empty slot to see if and to make sure that you

a chain is attached. understand the former.

In alternative two, the first record in the chain is moved into the table slot whilst

preserving its link to the rest of the chain.

® O

Questions

An empty hash table is set up for open hashing. The following hashing function is to be used to store

variable names beginning with an uppercase letter in range A...Z, as well as other information.

H (VariableName) = (code for first letter of VariableName x 11) Mod M
Where M is the number of rows in the hash table.
UsingM = 5 and coding letters of the alphabet as follows, A=1, B=2, ..., Z=26 show the contents of the
hash table after inserting the following variable names:

CHECK, OVERTIME, MAIN, P, URL, TAXRATE, INDEX, N, GENDER

You may ignore in your answer the other information associated with each variable name.

(a) Using the hashing algorithm expressed in pseudo-code below, calculate the hash value for the hash key
'PEN' stored in string variable Key. You will need access to an ASCII code table to map characters to their
equivalent ASCII codes. This is performed in the pseudo-code by the function Ord. The Length function

returns the number of characters in the string. The symbol' * ' means multiply.

Sum « O
For i « 0 To Length(Key)- 1
Sum <« Sum + Ord(Key[i]) * Ord(Key[i])
EndFor
HashValue « Sum Mod 523
(b) Now repeat the exercise with the made-up word 'NEP'.
(c) Can you see that there is a problem? What is the problem?

(d) Describe two ways that could be used to overcome this problem.

Explain why care must be exercised when deleting an entry in a hash table that uses closed hashing and on

which searching occurs after deletion.

A person owns n distinct pairs of socks, which are kept in an unmatched pile in a drawer.

Individual socks are pulled from the drawer blindly, then identified and placed in a separate pile according
to identity.

(a) How many individual socks must the person pull from the drawer to ensure that two are pulled that
match?

(b) In what respect does this process resemble a hash table and open hashing?

575
Free sample chapter - copyright Dr K R Bond 2021



Questions

@ In an application, student records are identified by their key field, the student’s unique learner number
(ULN) consisting of eight digits, e.g. 34567890. The application has to process a ULN allocated in the
range 1000000 to 99999999 but it will never have to deal with more than 500 ULNSs.

(a) Explain why when storing student records in a table in memory it would not be sensible to use the
ULN as the row address for the record, e.g. 34128496.

(b) Explain why the use of a hash table would be a better option for this application.

@ (a) State two advantages of using hashing and the hash table approach over the alternative approach
which just stores records in an ordinary table starting from the first row.
(b) It is noticed that after inserting many records into a hash table that uses closed hashing, searches are
taking much longer than they did.
(i) Explain why this may be the case

(ii) Suggest a solution that could potentially restore searching times to what they were.

@ Explain why it is necessary to store the hash key in a hash table.
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