
542

Hashing and Bitcoin34

Hashing

Purpose: To understand the use of hashing functions in
cryptography and in hash tables

Chapter 33 introduced digital signatures whereby a digest of the message is signed
instead of the message m. The message digest is shorter than the message m and is
generated by applying a hash function H to the message m. The message digest
H(m) is typically between 128 and 512 bits, compared to thousands or millions of
bits for the message m itself. Signing H(m) is therefore much less computationally
intensive than signing m directly because signing H(m) involves working with
fewer bits.

In general, a hashing or hash function H maps input data, m, of an arbitrary
length in a random way to an output of fixed length. The output, a fixed-length
random value, is called the hash value or just hash.

Hashing functions have many uses besides generating message digests.

For example, hash functions are also used as mapping functions in hash tables, a
data structure which is considered later in this chapter.

Hash functions used in cryptography are different from hash functions used
in hash tables. Cryptographic hash functions have specific security properties,
notably:

A cryptographic hash function should be a one way function, i.e. a
function which is practically infeasible to invert, i.e. given a message m
it should be relatively easy to compute its hash value H(m), but given a
hash value x it should not be possible to find an m such that H(m) = x
given current computational resources.

Hash table mapping functions are less stringent in this respect.

Both cryptographic and hash table functions should have good collision

resistance. A collision occurs when H(m1) = H(m2) for two different inputs m1 and
m2 but hash table functions have ways of coping when collisions do occur.

Theoretically avoiding collisions is impossible because there are more possible
input values than there are possible output values.

However, the collision-resistance requirement simple means that, although
collisions exist, encountering these should be minimised in the case of hash tables
or avoided altogether in the case of cryptographic hash functions.

It is also important that both types of hash function should be quick to compute.

Information

The term “hash” originates by
analogy with its non-technical
meaning, to “chop and mix”.
Hash functions often “chop”
the input domain into many
sub-domains that get “mixed”
e.g. add the first three digits of
the key, add the last three digits,
concatenate the two resulting
digit strings then map into
the output range by applying
modulo N.

Free sample chapter from How to Program Effectively in Delphi for AS/A Level Computer Science by Dr K R Bond

PDF edition available fromom
https://www.educational-computing.com
Or
www.educational-computing.co.uk

Free sample chapter - copyright Dr K R Bond 2021

https://www.educational-computing.com

HOW TO PROGRAM EFFECTIVELY IN DELPHI

543

Real hash functions are distinguished from the ideal hash function as follows:

The ideal hash function is a random mapping from all possible input values to the set of possible output
values i.e. output hash values are of equal likelihood;

Real hash functions only attempt to be indistinguishable from a random mapping.

Secure hash functions
We saw in the previous chapter that ciphers protect data confidentiality (i.e. attempt to prevent data sent over a
communication link from being read if intercepted).
We also saw that hash functions protect data integrity by attempting to detect when data have been modified
whether that data is encrypted or not - message digest and signed message digest.
If a hash function is secure, two distinct pieces of data should always have different hashes. A file’s hash (the result
of applying the hash function to the file) can thus serve as an identifier. Even if a single bit is changed in the file, the
hash of the file will be completely different.
Secondly, the output from a secure hash function should be unpredictable.
The console mode program shown in Table 34.1 calls function THashSHA2.GetHashString, a class function,
which applies the Secure Hash Algorithm-2 (SHA2) to a single character to produce a 256-bit hash value output.
The function GetHashString returns a hexadecimal string which it generates by dividing each 256-bit hash value
into 64, 4-bit blocks before treating each block as a single hexadecimal digit which it then maps to its equivalent
hexadecimal character digit, e.g. hexadecimal digit C is mapped to character 'c'.
256 bits map to 64, 4-bit blocks which map to 64 characters chosen from the set ['0'..'9', 'a'..'f '].
The output from this program for the characters 'a', 'b' and 'c' is shown in Figure 34.1. Although the bit patterns
for 'a', 'b' and 'c' differ by only one or two bits ('a' is the bit pattern 01100001, 'b' is 01100010 and 'c' is
01100011) their hash values are completely different. Given only these three hashes, it is impossible to predict the
SHA2 - 256 hash of 'd', etc, i.e. the hash values are unpredictable. The function THashSHA2.GetHashString
returns a random string each time it receives an input.

Program CryptoHashOnACharUsingSHA2_256Project;
{$APPTYPE CONSOLE}
{$R *.res}
Uses
 System.SysUtils, System.Hash;
Var
 Ch : Char;
Begin
 Repeat
 Write('Input char to hash: ');
 Readln(Ch);
 Writeln('Hash value SHA2 of ', '''', Ch, '''', ' = '
 + THashSHA2.GetHashString(Ch, SHA256));
 Writeln('Hash value SHA2 of ', '''', Succ(Ch), '''', ' = '
 + THashSHA2.GetHashString(Succ(Ch), SHA256));
 Writeln('Hash value SHA2 of ', '''', Succ(Succ(Ch)), '''', ' = '
 + THashSHA2.GetHashString(Succ(Succ(Ch)), SHA256));
 Write('Another go (Y/N)? ');
 Readln(Ch);
 Until Ch In ['N', 'n'];
End. Table 34.1 CryptoHashOnACharUsingSHA2_256Project.dpr

P

Free sample chapter - copyright Dr K R Bond 2021

544

Preimage resistance

In practice, the security of a hash function, H(m), where m is any message, is judged by whether an attacker will
find m, given the generated hash value x. We call m the preimage in this scenario and the security property of the
hash function that resists discovery of m given hash value x, preimage resistance.

To illustrate the difficulty that an attacker will experience, consider a hash function that outputs hash values of
length 256 bits and which behaves like a truly random function. There are 2256 equally likely hash values. If just
1024-bit length messages are considered, there are 21024 possible messages. Therefore, on average each possible
256-bit hash value will have 21024/2256 = 2768 preimages of 1024 bits each. 2768 is approximately 1.6 x 10231.
If execution time of a preimage search algorithm for a match with hash value x - Table 34.2 - for one possible
message m is, say, 5 x 10-7 seconds, then to test half the possible messages of length 1024 bits would take 4 x 10224
seconds, an enormous amount of time. And then there are other possible bit length messages......

Preimage resistance may be divided into first-preimage resistance and second-preimage resistance.

First-preimage resistance means the degree of resistance to discovering any message that maps to a given hash value.

Second-preimage resistance means the degree of resistance for a given message m1 of finding a second message m2 that
hashes to the same value as m1.
First-preimage resistance

First-preimage resistance is important in the case of passwords which are hashed and saved in a database. When
a user logs in, the hash of the entered password is computed and compared against the stored hash value. The
intention of storing hashes of passwords instead of storing passwords directly is to keep passwords stored in a
system confidential. As passwords are usually of limited length, a salt (random data) is added to the password before
hashing to make it more difficult to discover the password given the hash value. Storing passwords in this way relies
crucially on the hash not being reversed by an attacker, i.e. first-preimage resistance.

Figure 34.1 SHA2 - 256 hash values of the characters ‘a’, ‘b’, ‘c’

 Function FindPreImage(x : THashValue) : TMessage
 Var
 m : TMessage
 Repeat
 m ← GenerateRandomMessage
 If H(m) = x
 Then Exit;
 Until False
 Result ← m
 End Function

Table 34.2 Pseudocode for preimage search algorithm for a secure hash function h

Information
SHA2-256 is built into Apple Macs. Choose Terminal and then type
 echo -n 'hello!' | shasum - a 256
to pass the string 'hello!' through a pipe (|) to the function
shasum.
Install NotePad++ on Windows. This editor has a SHA-256
option under Tools.

Free sample chapter - copyright Dr K R Bond 2021

545

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Second-preimage resistance

Second-preimage resistance is important in protocols which focus on message integrity. A match between the original
message and its hash should be confirmation that the document has not been altered.

Second-preimage resistance is also important in a commitment scheme which is a cryptographic primitive that allows
one to commit to a chosen value (or chosen statement) while keeping it hidden from others, with the ability to
reveal the committed value later.
Interactions in a commitment scheme take place in two phases:

•	 the commit phase during which a value is chosen and specified
•	 the reveal phase during which the value is revealed and checked

Figure 34.2 shows an example in which Bob sends the hash value of an even or odd number chosen from some
prearranged fixed but large range of integers. The chosen number encodes the setting of a single bit known only to
Bob at this stage. In the commitment phase, Bob chooses an even number if the bit is to be set to one, otherwise he
chooses an odd number. Alice on receipt of the hashed value makes a guess as to the setting of Bob’s bit and replies
by sending her guess as a single bit. Upon receiving Alice’s guess, Bob enters the reveal stage by sending the original
number. On receipt, Alice verifies this number by comparing the hash of this number with the hash value received
during the commit stage. If Bob uses a hash function that has weak second-preimage resistance then it is possible
that Bob knows of a different number with opposite parity (evenness or oddness) that produces the same hash value
as the committed number. Bob then has the option to determine the outcome whether Alice guesses correctly or
not by exploiting the second-preimage weakness in the hash function.
What might Bob’s bit sequence represent? One case is the sequence represents the head|tail outcome of a series of
coin tosses which Alice is required to guess.

Hash H Store x1Hash
values

sent
over

secure
link to
Alice

Alice’s
guesses

sent
over

secure
link to

Bob

Store x2

Store x3

Store xk

Hash H

Hash H

Hash H

Hash value x1

Hash value x2

Hash value x3

Hash value xk

n1n2n3n4n5n6n7n8n9n10n11nk

..
..

Guess Even

Guess Even

Guess Odd

Guess Even

.. ..

1

1

0

1

xk ...x3 x2 x1

1 1 0 0 1 1 0 0 1 1 0 1

 0 ... 1 0 0 0 1 0 1 1 0 1 1

Odd. Even 0dd 0dd 0dd Even 0dd Even Even 0dd Even Even

...

1 1 0 0 1 1 0 0 1 1 0 1

Alice checks
integrity of n

using stored x
 0 ... 1 0 0 0 1 0 1 1 0 1 1

Odd. Even 0dd 0dd 0dd Even 0dd Even Even 0dd Even Even

n1n2n3n4n5n6n7n8n9n10n11nk
...

Alice
checks

evenness
of n Alice receives Bob’s bit

sequence having checked
its integrity against the

stored hashes.

Alice sends guesses as the bit
sequence she wants to send to Bob

Bob’s bit sequence encoded as a
sequence of even and odd numbers, n.
1 is encoded as an even number, 0 as

an odd number.

Bob’s bit sequence encoded
as even and odd numbers n.

Bob hashes each
number using hash

function H.

Alice’s bit sequence

Reliable and secure exchange of bit sequences between Bob and Alice.
Bob encodes his bit sequence as even and odd numbers chosen from a

prearranged �xed but large range of numbers.
Alice encodes her bit sequence as guesses, even is 1, odd is 0.

Figure 34.2 Commitment scheme

Free sample chapter - copyright Dr K R Bond 2021

546

Collision resistance

Whatever hash function is used, there are always more possible messages by design than hash values so collisions
must exist. This is the pigeonhole principle in action.

The pigeonhole principle states that if there are n holes and m pigeons to put in these holes, and if m is
greater than n, at least one hole must contain more than one pigeon.

The collision resistance of a hash function is a measure of how hard it is to find collisions. A collision resistant hash
function is one which should make it infeasible for attackers to find two distinct messages that hash to the same
value.

Collision resistance is related to second-preimage resistance. If it is possible to find second-preimages for a hash
function, it is also possible to find collisions.
It is actually faster to find collisions than it is to find preimages thanks to the birthday attack. The birthday attack is
a restatement of the birthday problem of calculating the probability that in a set of n randomly selected people, at
least two people share the same birthday.
Let p(n) be the probability that in a set of n randomly chosen people at least two people share the same birthday.
Then 1 - p(n) is the probability that every single one of them has distinct birthdays.
The number of ways to pick n distinct birthdays from a set of 366 days (when the order in which you pick the
birthdays matters) is

366 x 365 x x (367 - n)

because each successive birthday has one fewer choice of days left.
The number of possibilities for the birthdays for n people is 366n.(although not all equally likely because of the leap
year, but we will ignore this)

Therefore,

If n = 24
366! = 9.19 x 10780

366n = 36624 = 3.34 x 1061

(366 - n)! = (366 - 24)! = 342! = 5.95 x 10719

36624 x 342! = 3.34 x 1061 x 5.95 x 10719 = 19.87 x 10780

Therefore,

The probability that in a set of 24 randomly chosen people at least two people share the same birthday is 54%.
If the calculation is repeated but with n = 72 the probability is close to 100%.

1 - p(n) = 366 x 365 x x (367 - n)

 366n

1 - p(n) = 366 !

 366n x (366 - n)!

p(n) = 1 - 366 !

 366n x (366 - n)!

p(24) = 1 - 366 ! = 1 - 9.19 x 10780 = 1 - 0.46 = 0.54

 366n x (366 - 24)! 19.87 x 10780

Free sample chapter - copyright Dr K R Bond 2021

547

HOW TO PROGRAM EFFECTIVELY IN DELPHI

We are now ready to answer the question:

How many values does an attacker need to compute before the probability of a collision is greater than 50%?

Suppose that a hash function is chosen with a 64-bit range, i.e. its output is a 64-bit nonnegative integer less than 264 (0 .. 264 - 1).

Just as with the birthday problem, the probability of a collision from n random samples is

where M = 264 the number of possible hash values.

For n2 << M

For pM(n) =0.5

i.e. n is of the order of √M. For M = 264, √M = 232 which is approximately 4 x 109. Trialling this number of sample
messages is feasible (hash(sample value)). This vulnerability necessitates the use of a larger hash range in practical
applications.

If a 256-bit range is chosen, i.e. hash values of nonnegative integers less than 2256, then for n2 << M, n is of the order
of √ 2256, i.e. 2128 which is approximately 3 x 1038. The number of values an attacker needs to compute before the
probability of a collision is greater than 50% is now large enough to be infeasible by a brute force approach.

How can an attacker exploit a collision vulnerability in a hashing function?

An attacker typically begins by constructing two messages with the same hash value where one message
appears legitimate. For example, when an attacker, X, discovers that the message

"I, SomeName, agree to pay X the sum of £5000.00 on 01/03/2021."

has the same hash as

"I, SomeName, agree to pay X the sum of £50000.00 on 09/03/2021."

then X can try to get the victim, SomeName, to digitally sign the first message. The attacker X can then
claim that SomeName actually signed the second message. SomeName signs the hash of the first and
genuine message, i.e. signs the message digest, with his/her private key and the attacker X retrieves the
hash from the digitally signed message digest by using SomeName’s public key. X now attempts to prove
that the hash for the confirmed signature matches the second bogus message.

Collisions have been announced for the following hash functions

•	 SHA-0

•	 MD4

•	 MD5

•	 HAVAL-128

•	 RIPEMD

•	 SHA-1.

pM(n) = 1 - M !

 Mn x (M - n)!

pM(n) ≈ n2

 2M

0.5 ≈ n2

 2M

Free sample chapter - copyright Dr K R Bond 2021

548

Hash function construction
The simplest way to hash a message is to split it into chunks and process each chunk consecutively using a similar
algorithm. This is called iterative hashing. It comes in two main forms:

•	 Using a technique based on a compression function that transforms an input to a smaller output. This is
known as the Merkle-Damgård construction after cryptographers Raplh Mekle and Ivan Damgård.
MD4, MD5, SHA-1, and the SHA-2 family are examples.

•	 Using a technique that transforms an input, a binary string of any length, and returns a binary string with
any requested length, such that any two different inputs give two different outputs, i.e. permutations.
Such functions are called sponge functions. An example is Keccak
which is also known as SHA-3.

Hashing file contents in Delphi
Start a new application New|Window VCL Application - Delphi.
Save the project as CryptographicHashOnFileProject.dproj
and its unit as CryptographicHashOnFileUnit.pas in folder
CryptographicHashOnFileProject.
Add the following components to the form:

•	 3 x TPanel
•	 6 x TButton
•	 2 x TEdit
•	 2 x TLabel
•	 2 x TMemo
•	 1 x TOpenDialog

Configure and rename these as shown in Figure 34.3 and Figure 34.4.

Figure 34.4 CryptographicHashOnFileProject user interface design

Figure 34.3 Structure window

Free sample chapter - copyright Dr K R Bond 2021

549

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Double click the buttons to create event-handlers.
Add the following to the class definition as shown in Table 34.3.

Procedure SHA1HashFile(InputFileName, HashFileName : String);

Procedure SHA2_512HashFile(InputFileName, HashFileName : String);

Procedure SHA2_256HashFile(InputFileName, HashFileName : String);

Procedure SHA2_224HashFile(InputFileName, HashFileName : String);

Place the cursor in each of these in turn and press Ctrl+Shift+C to create the skeleton procedure definition in the
Implementation section.

Add the code shown in Table 34.4 to the body of Procedure SHA2_256HashFile.

Repeat this process for the other procedures except SHA1HashFile changing the references SHA256 to the
appropriate references for the respective procedure, e.g. SHA256 ↦ SHA512.

SHA1HashFile. GetHashStringFromFile body code is similar for all but

OutputStringList.Add(THashSHA1.GetHashStringFromFile(InputFileName));

which has only one parameter.

Type

 TfrmSHAHash = Class(TForm)

 PanelTopLeft : TPanel;

 PanelRight : TPanel;

 mbReportProgress : TMemo;

 btnHashSHA1 : TButton;

 btnHashSHA2_512 : TButton;

 edtNameOfFileToHash: TEdit;

 lblInputFileName : TLabel;

 edtNameOfHashFile: TEdit;

 lblOutputFileName : TLabel;

 btnSelectNameOfFileToHash : TButton;

 btnSelectHashFileName : TButton;

 OpenDialog1 : TOpenDialog;

 PanelLeft : TPanel;

 mbHashString : TMemo;

 btnHashSHA2_256 : TButton;

 btnHashSHA2_224 : TButton;

 Procedure btnHashSHA1Click(Sender : TObject);

 Procedure btnHashSHA2_512Click(Sender : TObject);

 Procedure btnSelectHashFileNameClick(Sender : TObject);

 Procedure btnSelectNameOfFileToHashClick(Sender : TObject);

 Procedure SHA1HashFile(InputFileName, HashFileName : String);

 Procedure SHA2_512HashFile(InputFileName, HashFileName : String);

 Procedure SHA2_256HashFile(InputFileName, HashFileName : String);

 Procedure SHA2_224HashFile(InputFileName, HashFileName : String);

 Procedure btnHashSHA2_256Click(Sender : TObject);

 Procedure btnHashSHA2_224Click(Sender : TObject);

 End;

Var

 frmSHAHash: TfrmSHAHash;

Table 34.3 Class definition TfrmSHAHash and variable declaration frmSHAHash

P

Free sample chapter - copyright Dr K R Bond 2021

550

Add the code shown in Table 34.5 to the body of event handler btnHashSHA2_256Click.

Repeat for the other btnHash....Click event handlers replacing references to SHA2 256 to the relevant hashing
algorithm.

Add the code shown in Table 34.6 to the bodies of the OpenDialog event handlers.

Save All (SHIFT+CTRL+S).

Click Run (F9) to build and run the application CryptographicHashOnFileProject.

Figure 34.5 shows CryptographicHashOnFileProject in execution. Books.txt is an 80 kB text file
downloaded from http://www.gutenberg.org/files/64684/64684-0.txt.

Procedure TfrmSHAHash.SHA2_256HashFile(InputFileName, HashFileName : String);
 Var
 OutputStream : TFileStream;
 OutputStringList : TStringList;
 Begin
 If FileExists(InputFileName)
 Then
 Begin
 OutputStringList := TStringList.Create;
 OutputStringList.Add(THashSHA2.GetHashStringFromFile(InputFileName, SHA256));
 OutputStream := TFileStream.Create(HashFileName, fmCreate);
 OutputStringList.SaveToStream(OutputStream);
 mbHashString.Lines.Add(OutputStringList.Text);
 mbReportProgress.Lines.Add('Size of contents of hash file '
 + ExtractFileName(HashFileName) + ' produced with SHA2 256 is in bits '
 + IntToStr(4 * Length(THashSHA2.GetHashStringFromFile(InputFileName, SHA256)))
 + '.' + #10#13#10#13);
 OutputStream.Free;
 OutputStringList.Free;
 End
 Else ShowMessage('File doesn''t exist');
 End; Table 34.4 Procedure that applies SHA2-256 hash function to input file

P

Procedure TfrmSHAHash.btnHashSHA2_256Click(Sender : TObject);

 Begin

 SHA2_256HashFile(edtNameOfFileToHash.Text, edtNameOfHashFile.Text);

 mbReportProgress.Lines.Add('Input file ' + ExtractFileName(edtNameOfFileToHash.Text)

 + ' hashed with SHA2 256.' + #10#13#10#13);

 mbReportProgress.Lines.Add('Output file ' + ExtractFileName(edtNameOfHashFile.Text)

 + ' produced with SHA2 256.' + #10#13#10#13);

 End;
Table 34.5 Event handler for btnHashSHA2_256Click

P

 Procedure TfrmSHAHash.btnSelectNameOfFileToHashClick(Sender : TObject);
 Begin
 If OpenDialog1.Execute
 Then edtNameOfFileToHash.Text := OpenDialog1.FileName;
 End;

 Procedure TfrmSHAHash.btnSelectHashFileNameClick(Sender : TObject);
 Begin
 If OpenDialog1.Execute
 Then edtNameOfHashFile.Text := OpenDialog1.FileName;
 End; Table 34.6 Event handlers for the input and output file dialogues

P

Free sample chapter - copyright Dr K R Bond 2021

http://www.gutenberg.org/files/64684/64684-0.txt

551

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Bitcoin® and Blockchain
The Bitcoin project was the first to bring together technologies from the 1970s, 80s and 90s to create something
novel that solved important problems associated with a digital currency based on a distributed ledger system.

According to Wikipedia1:

A ledger is a book or collection of accounts in which account transactions are recorded. Each account has an opening or
carry-forward balance, and would record transactions as either a debit or credit in separate columns, and the ending or
closing balance.

Bitcoin uses

•	 a peer-to-peer network protocol (see BitTorrent for an example of a peer-to-peer network) consisting of miner
nodes (miners compete to add blocks to the blockchain) and nodes that keep the network operating (these nodes
validate blocks, confirm transactions and send updates to ledgers in real time) - Figure 34.6.

•	 some core cryptographic functions - SHA-256, RIPEMD160, Elliptic Curve Digital Signature Algorithm
(ECDSA), public key/private key encryption.

•	 Game theory - a dynamically adjusting equilibrium system that uses economics at a global scale - the energy
cost incurred in solving a challenge (proof of work) - to enable a trustless distributed system to function
successfully.

Miners create blocks containing transactions picked from a pool of transactions.
Each miner that successfully solves a challenge may then attach their block to the chain of blocks called Bitcoin’s
blockchain - Figure 34.7.
The challenge is of sufficient computational difficulty to deny an algorithmic solution so miners are left with no
choice but to use a brute-force approach. The level of difficulty is set so that finding a solution takes approximately
10 minutes. Miners using hashing algorithm SHA-256 have to find the nonce (number used only once) that when
concatenated with a hash of the previous block, a hash of the transactions in the block and a timestamp produces a

1	 Wikipedia - Text under CC-BY-SA license - https://en.wikipedia.org/wiki/Ledger

Figure 34.5 CryptographicHashOnFileProject in execution

Free sample chapter - copyright Dr K R Bond 2021

https://en.wikipedia.org/wiki/Ledger

552

hash with a required number of leading zeroes - Figure 34.8. The hash value produced in this way becomes the new
block’s hash value.

Block hash = SHA-256 Hash(Hash of previous block + Transactions hash + Timestamp + Nonce)

The first miner to solve the challenge has their block of transactions added to the blockchain once their solution
has been validated by other nodes in the network (the new block contains everything needed to validate the
block’s hash, i.e. verify that the challenge has been solved). As each node in the network contains a local copy of
the blockchain, the local copies are updated by propogating the validated new block through the network. Very
occasionally, two miners arrive at a solution about the same time (their block’s timestamp will verify this) and start
the propogation process at about the same time. Imagine that these two miners are on opposite sides of the globe,
then for a while nodes closer to one miner will add this miner’s block while nodes closer to the other will get that

Block Header

Block 1

Hash(Previous Block Header)

Timestamp

Nonce

Merkle Root Hash

Hash(Block 1 Header)

Transaction List

Time

Block Header

Block 2

Hash(Previous Block Header)

Timestamp

Nonce

Merkle Root Hash

Hash(Block 2 Header)

Transaction List

Block Header

Block 3

Hash(Previous Block Header)

Timestamp

Nonce

Merkle Root Hash

Hash(Block 3 Header)

Transaction List

Figure 34.7 Structure of a block in Bitcoin’s blockchain

Figure 34.6 Map of bitcoin nodes

https://bitnodes.io site is ©ADDY YEOW

Free sample chapter - copyright Dr K R Bond 2021

553

HOW TO PROGRAM EFFECTIVELY IN DELPHI

miner’s block. Thus for a while, half the network will have one blockchain version and the other half the other.
What should be done when the new blocks cross over? When this happens a fork is added to the blockchain to
accommodate the other block. On receiving a validated block, miners stop working on the current challenge -some
miners will be using transactions that occur in the accepted block - and start a new block challenge with other
transactions from the unprocessed pool. The arrival of the second block with a timestamp similar to the newly
added block signals that a fork must occur. The winner of the next challenge round will add their validated block to
the oldest branch of the fork i.e. the branch before the fork arose in their local copy. After five new blocks have been
added, one branch of the fork must be longer than the other. The longest branch is then kept and the shorter one
abandoned, with its transactions returned to the unprocessed transaction pool if they have not been included in any
of the blocks in the retained branch.

The blockchain is a chain of blocks containing every transaction that has occurred with the very first, a special
transaction called a coinbase transaction, recorded in block 0. Coinbase transaction are assigned their own space
in the block. In Bitcoin, miners are rewarded with bitcoins everytime they succeed in solving the challenge.
Figure 34.8 shows that miner Mick has been rewarded three times with 50 BTC each time. This is recorded in the
coinbase field of the block. Whilst Bitcoin was still in its proof of concept stage, the blocks were currency-generation-
blocks similar to block 0 in Figure 34.8. Spending came later when it was clearly demonstrated that Bitcoin had
solved the coordination problem for shared ledgers:

•	 Shared ledgers (each node in the network has their own local copy of the ledger) with multiple
collaborators are vulnerable to errors infiltrating the ledger because it is hard to coordinate the actions of
multiple users when they are acting independently.

•	 In a "trustless" community of anonymous users, in addition to honest mistakes, the system must also
guard against malicious users who are potentially seeking to defraud others.

Balances are not recorded in the blockchain, instead to answer the question, "How many BTCs does Mick have
currently?" requires that a local copy of the ledger is searched for all Mick’s transactions, both inputs and outputs.
The answer to the question is then given by the sum of the inputs minus the sum of the outputs. This is also the
approach used to prevent Mick from spending what he doesn’t have.
The blockchain of Bitcoin may be explorered at www.blockchain.com. Figure 34.9 shows block 2.

2,083,236,893

Block:

Hash:

Nonce:

Prev:

Coinbase:

Trans:

0

000000000019d6...b3f1b60a8ce26f

00000000000000...0000000000000

BTC 50.00000000 Mick

2,573,394,689

Block:

Hash:

Nonce:

Prev:

Coinbase:

Trans:

1#

00000000839a8e...161bbf18eb6048

000000000019d6...b3f1b60a8ce26f

BTC 50.00000000 Mick

BTC 10.00 Mick

BTC 5.00 Mick

BTC 20.00 Mick

BTC

From

From

From

From10.00 Mick

Anne

Mary

Ben

Nat

1,639,830,024

Block:

Hash:

Nonce:

Prev:

Coinbase:

Trans:

2

000000006a625f...9da3fdcc99ddbd

00000000839a8e...161bbf18eb6048

BTC 50.00000000 Mick

BTC 10.00 Ben

BTC 5.00 Ben

BTC 5.00 Nat

From

From

From

Mary

Alice

Sid

#

Figure 34.8 Simplified view of blocks in the blockchain

Free sample chapter - copyright Dr K R Bond 2021

http://www.blockchain.com

554

Figure 34.10 shows the first two transactions for block 400000. In addition to collecting a reward in btc for mining
a block, miners may also collect a fee per transaction. The sender in the second transaction has Bitcoin address

13XSrVkweo5Dzm3yuykFw4P63N63MA6bTd
This uses a modified Base 58 binary-to-text encoding known as Base58Check2. This sender sent 0.19206072 BTC
to address 1HU1LDBXUg73f2ro2e2dB3XY8cFoYLFgZZ. The transaction itself is protected with a hash value

0de586d0c74780605c36c0f51dcd850d1772f41a92c549e3aa36f9e78e905284

Bitcoin relies on public key cryptography, where a private key – comparable to an account password –is used to
authorise ("sign") a movement of funds stored in an address. The address, which can be thought of as an account
number, is derived from the public key that mathematically corresponds to the private key. Each owner transfers
Bitcoin by digitally signing a hash of the previous transaction(s) (assigning Bitcoin to the sender - any change is just

2	 https://en.bitcoin.it/wiki/Base58Check_encoding

Figure 34.9 Block 2 of Bitcoin’s blockchain

Figure 34.10 The first two transactions of block 4000001

Free sample chapter - copyright Dr K R Bond 2021

https://en.bitcoin.it/wiki/Base58Check_encoding

555

HOW TO PROGRAM EFFECTIVELY IN DELPHI

sent back to the sender) and the public key of the next owner. Transactions are therefore digitally signed records
that reassign ownership of Bitcoins to new addresses. Miners verify that a transaction is genuine using the sender’s
public key. Software programs, commonly referred to as wallets, handle the management of the key pairs - see
https://www.coinbase.com/ for an example of how to create a wallet and to start using Bitcoin. Satoshi Nakamoto,
the anonymous creator of the Bitcoin network, actually defined Bitcoin as the chain of digital signatures that come
together to form a blockchain.

A user’s Bitcoin network wallet - e.g https://www.coinbase.com/ - monitors the user’s Bitcoin addresses (they can
have more than one public/private key pair) and keeps a record of all the transactions associated with these Bitcoin
addresses to create the user’s balance from the Bitcoin ledger.

Figure 34.11 shows the hash generated for the string "Hello World!" by Delphi program
HashingWithSHA256Project.exe. Load this program and make small alterations to the string, e.g. remove
the '!' character. Notice how the hash value changes in an unpredictable and seemingly random way. Of course,
SHA-256 is deterministic, i.e. the same output is produced for a given input. However, its output passes statistical
tests used to determine randomness. Table 34.7 shows the unit for this program, HashingWithSHA256Unit.pas.

Figure 34.11 shows the construction of a binary tree of hashes known as a Merkle tree, which is used primarily to
verify the data held within, without revealing what that data is, and at speed. Alteration of any of the underlying
data will be readily revealed.

Figure 34.11 HashingWithSHA256Project in execution

Root = Hash(H4, H5)

H4 = Hash(H0, H1) H5 = Hash(H2, H3)

H0 = Hash(Data0) H1 = Hash(Data1) H2 = Hash(Data2) H3 = Hash(Data3)

Data0 Data1 Data2 Data3

Figure 34.11 Merkle tree - binary data tree of hashes

Free sample chapter - copyright Dr K R Bond 2021

https://www.coinbase.com/
https://www.coinbase.com/

556

Simulating a blockchain in Delphi
Figure 34.12 shows a simulated blockchain created in Delphi in which eleven blocks are linked by a backward chain.

Start a new multi-device application New|Multi-Device Application|Blank Application.
Save the project as BlockChainProject.dproj and its unit as BlockChainUnit.pas in folder
BlockChainProject.

Add the following components to the form:
•	 2 x TLayout
•	 3 x TButton
•	 1 x TLabel
•	 1 x TGrid
•	 1 x TFDMemTable(an in-memory dataset)
•	 1 x TOpenDialog

Configure and rename these as shown in Figure 34.12 and Figure 34.13.
Set Align property of ButtonsLayout to Bottom.
Set Align property of GridLayout to Client.
Set Align property of Grid1 to Client.
Set Width property of lblTextFileName to 753 and Text property to empty
string.

Unit HashingWithSHA256Unit;
Interface
Uses
 Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants,
 System.Classes, Vcl.Graphics, Vcl.Controls, Vcl.Forms, Vcl.Dialogs,
 Vcl.StdCtrls, System.Hash;
Type
 TfrmSHA256HashingOfText = Class(TForm)
 mbText : TMemo;
 mbSHA256HashValue : TMemo;
 lblSHA256HashValue : TLabel;
 Procedure mbTextChange(Sender : TObject);
 End;
Var
 frmSHA256HashingOfText: TfrmSHA256HashingOfText;

Implementation
{$R *.dfm}
 Procedure TfrmSHA256HashingOfText.mbTextChange(Sender : TObject);
 Begin
 mbSHA256HashValue.Clear;
 mbSHA256HashValue.Lines.Add(THashSHA2.GetHashString(mbText.Text));
 End;
End. Table 34.7 HashingWithSHA256Unit.pas

P

Figure 34.12 Simulated blockchain - BlockchainProject.exe

Figure 34.13

Use TClientDataSet instead
for VCL applications

Free sample chapter - copyright Dr K R Bond 2021

557

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Select FDMemTable|Fields then right click Fields to bring up window
shown in Figure 34.14.

Click New Field option to bring up the New Field window shown in
Figure 34.15.

Enter the name Index for the Name field and Integer for the Type field.

Click OK.

Repeat to create four more new fields with name and type as follows
•	 Data - String
•	 HashOfPreviousBlock - String
•	 TimeStamp - DateTime
•	 HashOfCurrentBlock - String

The name assigned to each field is the field’s DisplayLabel property
value whilst the actual field name is a
concatenation of FDMemTable and name -
see Figure 34.16 and the Object Inspector.

Right click in the grid area of the form
to bring up the window shown in Figure
34.17.

Click Bind Visually... option to bring up the
LiveBindings Designer window shown in
Figure 34.18 (without the connections between
FDMemTable and Grid1).
Click and hold the mouse button down on the Index field of FDMemTable.
Drag the mouse to the * field of Grid1 and release the mouse button. A connecting line with an arrowhead at each
end is created anchored at one end to the Index field of FDMemTable and at the other end to a newly created field
Column[0]. Repeat for the other fields of FDMemTable to add four more connecting lines.

Figure 34.19 shows the user interface after connecting FDMemTable to Grid1. Note that LiveBindings Designer

has added two new components to manage the connection, BindingsList1 and BindSourceDB.
Save All (SHIFT+CTRL+S).

Figure 34.14 Fields popup window

Figure 34.15 New Field window

Figure 34.16 The five fields of FDMemTable

Figure 34.17

Free sample chapter - copyright Dr K R Bond 2021

558

Add the Private section to the class definition TfrmBlockChain as shown in Table 34.8 - page 560.
Place the cursor in CalculateHashes and press Shift+Ctrl+C to create the skeleton for this procedure in the
Implementation section.

Define the constant cnstGenesisBlockAddress then add the code shown in Table 34.8 to the body of
procedure CalculatesHashes. Add System.Hash to the Uses clause in the Interface section.
Double click button Load Data From Text File to create an event handler. Add the code shown in Table 34.9
to its body - page 561. Add System.IOUtils to the Uses clause in the Interface section.
Double click the OnCreate field in the Events page of frmBlockChain to create an event handler FormCreate.

Add the code shown in Table 34.11 to the body of this event handler - page 562.

Select Grid1 in the Object Inspector, open the LinkGridToDataSourceBindSourceDB1 - Figure 34.20.
Click on the ellipsis (...) field of the Columns property to bring up the editing window shown in Figure 34.21.

Figure 34.18 LiveBindings Design window

Figure 34.19 Design
View of User Interface
after using LiveBindings
Designer

Page references to update

Free sample chapter - copyright Dr K R Bond 2021

559

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Select each column in Figure 34.21 in turn and edit the
column in the Object Inspector as shown in Figure 34.22.
Use the following values

0 - Index
Alignment taCenter
TextWidth 8

1 - Data
Alignment taLeftJustify
TextWidth 44

2 - HashOfPreviousBlock
Alignment taCenter
TextWidth 68

3 - TimeStamp
Alignment taCenter
TextWidth 22

4 - HashOfCurrentBlock
Alignment taCenter
TextWidth 68

Select FDMemTable|Fields - Figure 34.23.
Select each column in Figure 34.23 in turn and
edit the column in the Object Inspector as shown in
Figure 34.24.
Use the following values

0 - Index
Alignment taCenter
TextWidth 8

1 - Data
Alignment taLeftJustify
TextWidth 44
Size 44

2 - HashOfPreviousBlock
Alignment taCenter
TextWidth 64
Size 64

3 - TimeStamp
Alignment taCenter
TextWidth 22

4 - HashOfCurrentBlock
Alignment taCenter
TextWidth 64
Size 64

Double click button Validate Data to create an event handler.
Add the code shown in Table 34.11 to its body - page 562.
Double click button Calculate Hashes Again to create an
event handler. Add the code shown in Table 34.9 to its body -
page 561.
Change the frmBlockChain properties as follows

 Caption = 'BlockChain'

 ClientHeight = 340

 ClientWidth = 1431

Save All (SHIFT+CTRL+S).
Download DataForBlockchain.txt. - Table 34.10.
Click Run (F9) to build and run the application BlockChainProject.

Click Load Data From Text File button and locate and load
DataForBlockchain.txt. Figure 34.12 shows the result.
Click Validate Data button to validate the blockchain - Figure 34.25.

Figure 34.20 Object Inspector for Grid1

Figure 34.21 Editing LinkGridToDataSourceBindSourceDB1.Columns

Figure 34.22 Editing Column[2] - setting TextWidth to 78

Figure 34.23 Structure window for FDMemTable Fields

Figure 34.24

Page references to update

Figure 34.25

Free sample chapter - copyright Dr K R Bond 2021

560

Unit BlockChainUnit;
Interface
Uses
 System.SysUtils, System.Types, System.UITypes, System.Classes, System.Variants, System.IOUtils,
 FMX.Controls, FMX.Forms, FMX.Graphics, FMX.Dialogs, FireDAC.Stan.Intf, FireDAC.Stan.Option,
 FireDAC.Stan.Param, FireDAC.Stan.Error, FireDAC.DatS, FireDAC.Phys.Intf, FireDAC.DApt.Intf,
 System.Rtti, FMX.Grid.Style, Data.Bind.EngExt, Fmx.Bind.DBEngExt, Fmx.Bind.Grid,
 System.Bindings.Outputs, Fmx.Bind.Editors, Data.Bind.Components, Data.Bind.Grid, FMX.StdCtrls,
 FMX.Layouts, Data.Bind.DBScope, FMX.Controls.Presentation, FMX.ScrollBox, FMX.Grid, Data.DB,
 FireDAC.Comp.DataSet, FireDAC.Comp.Client, System.Hash, FMX.Types, FMX.Memo.Types, FMX.Memo, FMX.Edit;
Type
 TfrmBlockChain = Class(TForm)
 FDMemTable : TFDMemTable;
 Grid1 : TGrid;
 BindingsList1 : TBindingsList;
 BindSourceDB1 : TBindSourceDB;
 ButtonsLayout : TLayout;
 btnCalculateHashesAgain : TButton;
 btnValidateData : TButton;
 LinkGridToDataSourceBindSourceDB1 : TLinkGridToDataSource;
 FDMemTableIndex : TIntegerField;
 FDMemTableData : TStringField;
 FDMemTableHashOfPreviousBlock : TStringField;
 btnLoadDataFromTextFile: TButton;
 FDMemTableTimeStamp : TDateTimeField;
 OpenDialog1 : TOpenDialog;
 lblTextFileName : TLabel;
 FDMemTableHashOfCurrentBlock : TStringField;
 GridLayout : TLayout;
 Procedure btnCalculateHashesAgainClick(Sender : TObject);
 Procedure btnValidateDataClick(Sender : TObject);
 Procedure btnLoadDataFromTextFileClick(Sender : TObject);
 Procedure FormCreate(Sender : TObject);
 Private
 CalculatingHashesFlag : Boolean;
 Procedure CalculateHashes;
 End;
Var
 frmBlockChain : TfrmBlockChain;
Implementation
{$R *.fmx}
 Const
 cnstGenesisBlockAddress = '00';
 Procedure TfrmBlockChain.CalculateHashes;
 Var
 strString, strHash, strPreviousHash : String;
 Begin
 If CalculatingHashesFlag
 Then Exit;
 CalculatingHashesFlag := True;
 FDMemTable.First;
 FDMemTable.BeginBatch;
 LinkGridToDataSourceBindSourceDB1.Active := False;
 Try
 While Not FDMemTable.Eof
 Do
 Begin
 If (FDMemTableHashOfPreviousBlock.AsString = cnstGenesisBlockAddress)
 Then strPreviousHash := cnstGenesisBlockAddress
 Else strPreviousHash := strHash;
 strString := FDMemTableIndex.AsString + FDMemTableData.AsString + strPreviousHash
 + FDMemTableTimeStamp.AsString;
 strHash := THashSHA2.GetHashString(strString);
 FDMemTable.Edit;
 FDMemTableHashOfCurrentBlock.AsString := strHash;
 FDMemTableHashOfPreviousBlock.AsString := strPreviousHash;
 FDMemTable.Post;
 FDMemTable.Next;
 End;
 Finally
 CalculatingHashesFlag := False;
 FDMemTable.EndBatch;
 LinkGridToDataSourceBindSourceDB1.Active := True;
 End;
 End;

Table 34.8 Part 1 of BlockChainUnit.pas

Free sample chapter - copyright Dr K R Bond 2021

561

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Now change the data, e.g. 'Chapter 1b Delphi IDE' to 'Chapter 1 Delphi IDE'.

Click Validate Data button to validate the blockchain but the blockchain is
no longer valid - Figure 34.26.

Click Calculate Hashes
Again button to regenerate the
blockchain hashes. Now confirm
that the blockchain is valid again.

 Procedure TfrmBlockChain.btnCalculateHashesAgainClick(Sender : TObject);
 Begin
 CalculateHashes;
 End;

 Procedure TfrmBlockChain.btnLoadDataFromTextFileClick(Sender : TObject);
 Var
 strlistLines : TStringList;
 intIndex: Integer;
 dtDateTime : TDateTime;
 FileName : String;
 CurrentDir : String;
 Const
 cnstDataFileName = 'DataForBlockChain.txt';
 Begin
 CurrentDir := GetCurrentDir;
 frmBlockChain.Caption := 'BlockChain - ' + CurrentDir;
 If OpenDialog1.Execute
 Then FileName := OpenDialog1.FileName
 Else FileName := CurrentDir + '\' + cnstDataFileName;
 If TFile.Exists(FileName)
 Then
 Begin
 FDMemTable.First;
 FDMemTable.BeginBatch;
 CalculatingHashesFlag := True;
 LinkGridToDataSourceBindSourceDB1.Active := False;
 Try
 FDMemTable.EmptyDataSet;
 strlistLines := TStringList.Create;
 Try
 strlistLines.LoadFromFile(FileName);
 dtDateTime := Now;
 For intIndex := 0 To strlistLines.Count - 1
 Do
 Begin
 FDMemTable.Insert;
 FDMemTableIndex.Value := intIndex;
 FDMemTableData.AsString := strlistLines[intIndex];
 dtDateTime := dtDateTime + 1;
 FDMemTableTimeStamp.AsDateTime := dtDateTime;
 If intIndex = 0
 Then FDMemTableHashOfPreviousBlock.Value := cnstGenesisBlockAddress;
 FDMemTable.Post;
 End;
 Finally
 strlistLines.Free;
 End;
 Finally
 FDMemTable.EndBatch;
 LinkGridToDataSourceBindSourceDB1.Active := True;
 CalculatingHashesFlag := False;
 End;
 CalculateHashes;
 lblTextFileName.Text := 'File name = ' + ExtractFileName(FileName);
 End
 Else ShowMessage('File with name ' + FileName + ' doesn''t exist');
 End;

Table 34.9 Part 2 of BlockChainUnit.pas

Chapter 2 Starting Programming
Chapter 1a Delphi IDE
Chapter 1b Delphi IDE
Chapter 3 Programming constructs
Chapter 5 Arithmetic operations
Chapter 4 Introducing data types
Chapter 10 String-handling operations
Chapter 6 Pointers and dynamic memory
Chapter 9 Exception handling
Chapter 8 Boolean operations
Chapter 7 Relational operators

Table 34.10 DataForBlockchain.txt

Figure 34.26

Free sample chapter - copyright Dr K R Bond 2021

562

BlockChainProject.exe calculates the hash of the current block as follows
 strString := FDMemTableIndex.AsString + FDMemTableData.AsString + strPreviousHash
 + FDMemTableTimeStamp.AsString;
 strHash := THashSHA2.GetHashString(strString);

This differs from how Bitcoin generates the hash for the current block which is as follows

Block hash = SHA-256 Hash(Hash of previous block + Transactions hash + Timestamp + Nonce)

BlockChainProject.exe uses the block’s index instead of a nonce. This makes calculating the hash very quick.
In Bitcoin, in order to deter miners from attempting to rewrite transactions in previous blocks, the opposite is
true. If a miner alters a block before the current block, let’s say the sixth block back, then the miner will have to
recalculate the hashes for the following five blocks. But in the time it will take the miner to do this, assuming that
the hardware used is not more than five times faster than other miners’ hardware, five new blocks can be added by
other miners, thus defeating the miner’s attempt to alter the chaining without being detected.

Miners have to calculate the nonce - a number that is used only once - that when concatenated with the transaction
data, timestamp and hash of previous block generates a hash with a specific number of leading zeros (the greater
the number of zeros the more difficult the task). The only way to do this is by brute force, incrementing the nonce
value in a loop until the required number of leading hexadecimal zeros is reached. Table 34.12 illustrates the
principle using a simple message string 'Hello!' concatenated with a series of numbers starting with 0. The SHA 256
column shows the hash result expressed in hexadecimal. Note that none of the hash values has leading hexadecimal
zeros. Figure 34.9 shows a block of bitcoin with a hash containing 8 leading hexadecimal zeros, i.e. 32 leading
binary digits (this block was added in 2009).

 Procedure TfrmBlockChain.btnValidateDataClick(Sender : TObject);
 Var
 strString, strHash : String;
 intIndex : Integer;
 Begin
 FDMemTable.First;
 FDMemTable.BeginBatch;
 Try
 While Not FDMemTable.EOF
 Do
 Begin
 strString := FDMemTableIndex.AsString + FDMemTableData.AsString
 + FDMemTableHashOfPreviousBlock.AsString + FDMemTableTimeStamp.AsString;
 strHash := THashSHA2.GetHashString(strString);
 FDMemTable.Next;
 If (Not FDMemTable.EOF) And (FDMemTableHashOfPreviousBlock.AsString <> strHash)
 Then
 Begin
 intIndex := FDMemTableIndex.Value;
 ShowMessage(Format('Stored hash in #%d does not match recalculated hash for block #%d!',
 [intIndex, intIndex - 1]));
 Exit;
 End;
 End;
 Finally
 FDMemTable.EndBatch;
 End;
 ShowMessage('Blockchain is valid!');
 End;

 Procedure TfrmBlockChain.FormCreate(Sender : TObject);
 Begin
 FDMemTable.Active := True;
 LinkGridToDataSourceBindSourceDB1.Columns[0].Header := Format('%7s', ['Block #']); //Centre heading
 LinkGridToDataSourceBindSourceDB1.Columns[1].Header := Format('%42s', ['Data']); //Centre heading
 LinkGridToDataSourceBindSourceDB1.Columns[2].Header := Format('%73s', ['Hash of Previous Block']);
 LinkGridToDataSourceBindSourceDB1.Columns[3].Header := Format('%22s', ['TimeStamp']);
 LinkGridToDataSourceBindSourceDB1.Columns[4].Header := Format('%73s', ['Hash of Current Block']);
 End;
End.

Table 34.11 Part 3 of BlockChainUnit.pas

Free sample chapter - copyright Dr K R Bond 2021

563

HOW TO PROGRAM EFFECTIVELY IN DELPHI

The nonce determination is expressed slightly differently in reality.

The nonce is that value that generates a hash interpreted as a number which is numerically smaller than the target
called the difficulty target.

The current target value using SHA 256 is a number in the range

2(256-1-k) to 2(256-k)-1 inclusive

where k is the number of leading zeros. SHA 256 uses 256 bits.

Table 34.13 illlustrates the possible ranges if k = 1 for 4, 5, 6 and n bits.

Suppose the current number of leading zeros that is required is set at 44, i.e. k = 44 (the year is currently 2021).

There are approximately 2212 - 2211 = 9 x 2211 ≈ 3 x 1064 different target numbers between 2211 and 2212 - 1, i.e for k = 44.
But there are 2256 different numbers given 256 bits, i.e. ≈ 1077.
The fraction of these which lie in the range for k = 44 is therefore ≈ 3 x10-13.

This means that roughly 4 x 1012 hashes must be calculated on average to find a hash less than the target value.

If the hardware is capable of executing 1010 searches of block hash space per second, locating a hash which satisfies
the target will take 400 seconds on average or 7 minutes.

In bitcoin, the time-consuming and energy-expensive nonce calculation outlined above generates information
that meets the specified conditions when successful. This information is taken as a proof that work has been done
called Proof of Work (PoW) to solve the challenge. The purpose of PoW (Proof-of-work algorithm) is to check if
calculations were indeed conducted during the creation process for a new block of cryptocurrency. The checking
process or verification can be done very quickly. (The term mining is used by analogy with mining for precious
metal - correct nonces are 'rare' and costly to produce).3

3	 The two example programs on bitcoin were inspired by a webinair given by Jim McKeeth
http://delphi.org/2018/02/delphi-and-the-blockchain-more-than-just-bitcoin-and-cryptocurrency/

9 x 2211

2256

Message + Nonce SHA 256 Hash
'Hello!' 5e9f00ca1f8a276af5de8b6373ccffd498ff22926c518721b75c29ae6a73d5d6

'Hello!0' a4dde72d413d81baf052b997e3f1e389600df10bfe68ffd965cd6cf31bebb0c0

'Hello!1' d4004ddb95a8d91cb70211c4d66cfd52efa947843c99c088138a49ce4e5ac019

'Hello!2' 32204efe17020ee4f5408d5c6729df928a894ea474c517f7de8b55c3f9507402

'Hello!209234516784532198765' 330b0fe5d1a886539705b7ee01c6b922405567aedad5fea8e591caf477fa5f6f

'Hello!2092345167845321987651
73761095678428976577002267512
65432789'

798d9f61396d906144d499d7c1b534ad52eb9d95fd41f82abd015fb58a9b79a4

Table 34.12 Hashes for a simple message string ‘Hello!' concatenated with a nonce

Total
number
of bits

Smallest binary
number with one

leading zero

Largest binary
number with one

leading zero

Smallest denary
number with one

leading zero

Largest denary
number with one

leading zero
4 0100 0111 4 7

5 01000 01111 8 15

6 010000 011111 16 31

n 01000...0000 01111...1111 2(n-2) 2(n-1) - 1

Table 34.13 Range of numbers with a single leading zero for a given number of bits

Free sample chapter - copyright Dr K R Bond 2021

http://delphi.org/2018/02/delphi-and-the-blockchain-more-than-just-bitcoin-and-cryptocurrency/

564

Simulating a blockchain mining in Delphi
Start a new Windows VCL application.
Save the project as BlockChainMiningProject.dproj and its unit as BlockChainMiningUnit.pas in folder
BlockChainMIningProject.
Add the following components to the form:

•	 3 x TPanel - rename TopPanel, MiddlePanel, BottomPanel, clear their captions.
•	 1 x TListBox - add to BottomPanel, rename lbxNonceTargetHash.
•	 1 x TMemo - add to TopPanel, rename mbMessage clear Lines property.
•	 1 x TButton - add to MiddlePanel, rename btnMine, set Caption property to Mine.
•	 2 x TLabel - add to MiddlePanel, rename the first lblDifficulty, set its Caption property to

Difficulty. and rename the second lblElapsedMilliSeconds, set its Caption property to the
empty string

•	 1 x TSpinEdit - add to MiddlePanel, rename spbDifficulty, set MinValue property to 1 and
MinValue property to 5.

•	 1 x TSplitter
Configure and rename these as shown in
Figure 34.27.
Set Align property of TopPanel to Top.
Set Align property of Splitter1 to
Top.
Set Align property of MiddlePanel to
Top.
Set Align property of BottomPanel to
Client.
Set Align property of mbMessage to
Client.
Set Align property of
lbxNonceTargetHash to Client.
Double click button btnMine
to create an OnClick event
handler.

Add the code shown in Table
34.14.

Save All (SHIFT+CTRL+S).
Click Run (F9) to build
and run the application
BlockChainMiningProject.

Try values of difficulty 1 to 5 for
the message 'Hello!'.

Figure 34.28 shows the outcome
for difficulty 5 which takes 6
minutes approximately to find a
solution.

Figure 34.27 BitCoinMiningProject User Interface

lblElapsedMilliseconds
Splitter1

mbMessage

lbxNonceTargetHash

TopPanel

MiddlePanel

BottomPanel

Figure 34.28 BitCoinMiningProject in execution

Free sample chapter - copyright Dr K R Bond 2021

565

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Unit BitCoinMiningUnit;
Interface
Uses
 Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, System.Classes, Vcl.Graphics,
 Vcl.Controls, Vcl.Forms, Vcl.Dialogs, Vcl.StdCtrls, Vcl.Samples.Spin,
 Vcl.ExtCtrls;
Type
 TfrmMiner = Class(TForm)
 TopPanel : TPanel;
 mbMessage : TMemo;
 BottomPanel : TPanel;
 Splitter1 : TSplitter;
 lbxNonceTargetHash : TListBox;
 spbDifficulty : TSpinEdit;
 lblDifficulty : TLabel;
 MiddlePanel : TPanel;
 btnMine : TButton;
 lblElapsedMilliseconds : TLabel;
 Procedure btnMineClick(Sender : TObject);
 End;
Var
 frmMiner: TfrmMiner;
Implementation
{$R *.dfm}
Uses System.Hash, System.Diagnostics;
 Procedure TfrmMiner.btnMineClick(Sender : TObject);
 Var
 strHash: string;
 intNonce: Integer;
 intDifficulty: Integer;
 StopWatch : TStopWatch;
 Begin
 lbxNonceTargetHash.Clear;
 intNonce := 0;
 intDifficulty := Trunc(spbDifficulty.Value);
 StopWatch.Start;
 Repeat
 strHash := THashSHA2.GetHashString(mbMessage.Text + intNonce.ToString);
 lbxNonceTargetHash.Items.Add(Format('%s = %d : %s', [‘Nonce’, intNonce, ‘Hash = ‘ + strHash]));
 Inc(intNonce);
 Until strHash.Substring(0, intDifficulty) = StringOfChar('0', intDifficulty);
 lbxNonceTargetHash.ItemIndex := lbxNonceTargetHash.Items.Count - 1;
 StopWatch.Stop;
 lblElapsedMilliseconds.Caption := 'Elapsed milliseconds = '
 + IntToStr(StopWatch.ElapsedMilliseconds);
 End;
End.

Table 34.14 BitCoinMiningUnit.pas

Free sample chapter - copyright Dr K R Bond 2021

566

Hash Tables
Tables
Using a table to store records
A table in computer science is a data structure of rows and columns, an example is shown in Table 34.15. This table
consists of 4 rows of data in three columns, labelled ULN, Forename, Surname. Each row stores a single record
of three fields containing data for an individual student as follows:

•	 student’s unique learner number (ULN) consisting of eight digits, e.g. 34567890

•	 Forename

•	 Surname

An individual record is uniquely identified by its key field, ULN.

The rows of this table are indexed with the first row that contains a student record being labelled with index 0, the
second with index 1, and so on.

This table will occupy a part of the computer’s RAM (main memory). It can also be stored permanently in backing
store or secondary storage, e.g. magnetic disk. However, to be searched or manipulated, it must first be copied from
secondary store to RAM.

Searching the table for a record
The table could be searched for a particular record by starting at the row labelled with index 0 and scanning the
entries in turn until the record is found if it is present, or the end of the table is reached. This is known as linear
search which is one of several ways that an existing record can be ‘looked up’.

Inserting a new record into the table
Table 34.16 shows a table similar to Table 34.15 but this table has three empty rows following the four rows of
data. A new record could be inserted in the first empty row, a second new record in the next row and so on until the
table is full.

ULN Forename Surname
0 34567890 Fred Bloggs
1 90002789 Mary Smith
2 74432167 Ahmed Khan
3 24567813 Sarah White

Table 34.15 Student records stored in a table

ULN Forename Surname
0 34567890 Fred Bloggs
1 90002789 Mary Smith
2 74432167 Ahmed Khan
3 24567813 Sarah White
4
5
6

Table 34.16 Student records stored in a table with room for new records

Free sample chapter - copyright Dr K R Bond 2021

567

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Deleting a record in the table
The row containing the student record to be deleted is located by searching from row 0. Once found, the data in the
row is deleted. To avoid gaps appearing in the table, the occupied rows following this row are moved up to remove
the gap.

Limitations of this type of table and table access
A problem surfaces with the operations of searching, inserting and deleting described above when the table contains
a large number of records, e.g. 10,000. It just takes too much of the computer’s time to perform these operations.
One solution is to use a hash table based on a well-chosen hash function.

Hash table
A hash table resembles an ordinary table as described above but differs in the
method used to access the rows of the table.

A row of a hash table is accessed directly when looking up, inserting and deleting
a record, i.e. it does not start from row 0 every time but instead goes directly to
the required row. Movement of records when deleting a record is also eliminated.

Table 34.17 shows a hash table that has gone from being empty to containing 3
records located in three different rows with indices, 2, 5, and 6, respectively, as
input data.

The table gets the name hash because of the method used to generate the address or row number. A randomising
function called a hash function is applied to the record’s key, in this case the 8-digit unique learner number or
ULN, to map the possible 8-digit ULN values into a much smaller range of values, the possible row numbers. This
process is known as hashing.

If the ULN values were used directly as specifiers of row addresses, we would have to accommodate addresses
covering all possible values of an 8-digit number, 108 addresses in total, even though only a small subset of ULNs
might be required, e.g. those used in a particular school.

For ease of understanding, the number of rows for the table in Table 34.17 has been made small intentionally at
seven, and labelled 0, 1, 2, ..., 5, 6.

ULN Forename Surname
0
1
2 90002789 Mary Smith
3
4
5 74432167 Ahmed Khan
6 24567815 Sarah White

Table 34.17 Hash table storing three student records

24567815	 Sarah	 White

74432167	 Ahmed	Khan

90002789	 Mary	 Smith

Key concept

Hash table:
The table gets its name from the
method used to determine the
row to use.
The hash value generated by
applying a hash function to a
key is the table index where the
record with this key should be
stored if the row is free.

Free sample chapter - copyright Dr K R Bond 2021

568

Hash function
The hash function takes as input the record’s key (hash key) and outputs the row address of the row for this record.
The output is called the hash value or hash.

In our example, the hash value ranges from 0 to 6 for the seven rows of the given table. A hash function, H, that
will map 8-digit ULNs to the set
{0, 1, 2, ..., 5, 6} is shown below

H(ULN) = ULN Mod 7

Mod is the modulo arithmetic operator which calculates the remainder after integer division (see Chapters 5 and 33).

Table 34.18 shows three possible values of ULN being mapped to 2, 5 and 6 respectively e.g. 90002789 when
divided by 7 gives 12857541 with a remainder of 2.

Simple hashing functions
Hashing and hash tables are a way that memory locations for records can be
assigned so that records can be retrieved quickly.

A hashing function must be relatively quick to compute whilst at the same time
generating an even spread of values for the given inputs, the keys.

Another way that the latter can be expressed is that each hash value generated by
the hashing function should be equally probable.

Achieving this depends on both the particular key values being hashed, and the particular hash function employed.

The value of N in modulo N (e.g. Mod 7) is chosen to be prime because this can contribute to producing an even
spread of hash values.

One simple hash function that attempts to achieve these objectives, sums the squares of the ASCII codes of each
character of Key, as shown in Table 34.19 in pseudo-code.

The Ord function returns the ASCII code of a given character,

e.g. Ord('A') = 65.

The individual characters of Key are accessed using array indexing starting at 0, e.g. Key[0] accesses the first
character in the string.

ULN H(ULN)
90002789 2
74432167 5
24567815 6

Table 34.18 Some hash values produced
by hash function H applied to ULN keys

Key concept

Hash function:
Is a function H, applied to a key
k, which generates a hash value
H(k) of range smaller than the
domain of values of k,
e.g.
H : {00000000..99999999}
 → {0..6}

Key concept

Hash key:
Is the key that the hash function
is applied to.

Key concept

Hashing:
The process of applying a hash
function to a key to generate a
hash value.

Questions

Calculate H(ULN) for the following ULNs
(a) 31258745	 (b) 62517493	 (c) 49981627
Hint: The scientific mode of Microsoft Windows calculator has a Mod
operator.

1

Free sample chapter - copyright Dr K R Bond 2021

569

HOW TO PROGRAM EFFECTIVELY IN DELPHI

The algorithm generates hash values in the range 0 ... 522 because Sum is Modded with 523, a prime number.

Suppose that Key stores a string, then the steps to convert Key into a storage-address returned in Hash are as
follows:

Looking up a record in a hash table
A record with a given key can be looked up by just calculating the hash of its key
and checking the associated storage location.

English-French dictionary example
In this example, English words and their French equivalents are stored in records
in a hash table, HashTable, using a hashing function, H, based on the hashing
algorithm shown in Table 34.19. Each record must have a key field which
uniquely identifies the record. In this case, the key is the English word.

The hashing function, H, assigns hash table memory location H(k) to the record
with key, k.

In our English-French dictionary example, H(k) could be H('BEACH') where
k = 'BEACH' for the record containing the English word 'BEACH' and the
equivalent French word 'PLAGE'.

The storage structure, HashTable, that will be used with this address has the following data structure:

 THashTableArray = Array[0..522] Of TRecord

Where the data structure TRecord is defined as follows

 TRecord = Record

 EnglishWord : String

 FrenchWord : String

 End

Sum ← 0
For i ← 1 To Length(Key)
 Sum ← Sum + Ord(Key[i]) * Ord(Key[i])
Endfor
Hash ← Sum Mod 523

Table 34.19 Hashing algorithm that calculates a storage address in range 0 to 522

Information

The term “hash” originates by
analogy with its non-technical
meaning, to “chop and mix”.
Hash functions often “chop”
the input domain into many
sub-domains that get “mixed”
e.g. add the first three digits of
the key, add the last three digits,
concatenate the two resulting
digit strings then map into
the output range by applying
modulo N.

Questions

Calculate H(k)for the following keys, k
 (a) PEN			 (b) CAT		 (c) NOW		 (d) WON
	 (ASCII codes for the characters 'A'...'Z' map to the range 65 ... 90 - see Chapter 4)

2

Free sample chapter - copyright Dr K R Bond 2021

570

Collisions
The hash values calculated in Questions 2(c) and 2(d) are identical because the
English words contain the same letters, but arranged in a different order (NOW
and WON). So both words hash to the same address. This situation is known as a
collision. Clearly, there is only space at this address for one English-French word
pair.

Collisions can be resolved in two ways:

1.	 Store the record in the “next available” empty location in the table, or

2.	 Store a pointer in each table location that points to a list of records that have all collided at this table
location, otherwise set the pointer value to null.

Method 1 – closed hashing or open addressing
The first way of resolving a collision is to rehash which means to generate a new
table row address at which to store the English-French word pair.
One rehash method, called linear rehash, calculates a new address by adding one
to the original address before testing that the location with this new address is
empty, e.g. indicated by '-1' in the EnglishWord field.

The rehash step may have to be repeated until an empty slot is found.

To avoid going off the end of the table, the new address is made to wrap around
to the beginning of the hash table, if necessary and assuming there is an empty slot, by using modular arithmetic as
follows:

 Repeat

 Address ← (Address + 1) Mod 523

 Until HashTable[Address].EnglishWord = '-1'

This method is an example of closed hashing or open addressing because other row addresses of the hash table are
open to being used but access to addresses outside the hash table are closed off.

Programming tasks

Write a program to store English words and their French equivalents in a hash table which is an array or
its equivalent with addresses in range 0 to 522. The English word and its French equivalent should be
stored together in a record or equivalent data structure at an address which is calculated by the hashing
function, H, described above. The table should be initialised so that every key field stores the string '-1'
to indicate that this field’s record has yet to be used to store an English-French word pair. Use your
program to temporarily store the English words, PEN, CAT, NOW and their French equivalents.
(English word with its French equivalent:
PEN – PLUME, CAT – CHAT, NOW – MAINTENANT)

Extend your program so that after storing the English-French word pairs for PEN, CAT and NOW, the
program uses the hashing function, H, to retrieve the French equivalent when the user enters PEN, CAT
or NOW. Use a loop to enable the user to continue to look up the French equivalent until the user decides
otherwise.

1

2

Key concept
Closed hashing or open
addressing:
Method in which a collision is
resolved by storing the record in
the “next available” location.

Key concept
Collision:
A collision occurs when two or
more different keys hash to the
same hash value. For the hash
table this means a hash value
of a location in the hash table
which is already occupied.

Free sample chapter - copyright Dr K R Bond 2021

571

HOW TO PROGRAM EFFECTIVELY IN DELPHI

The table, HashTable, is an array whose addresses run from 0 to 522.
The table is initialised with 523 empty English-French word pair records in which every EnglishWord field has the
string '–1' stored in it to indicate that this field is unoccupied and the whole record is empty.
Table 34.20 shows an algorithm expressed in pseudo-code for inserting an English-French word pair into an
initialised HashTable. The English word to insert is supplied in WordInE and its French equivalent in WordInF.
Each row of the hash table has space for a record with two fields, EnglishWord and FrenchWord.

Clearly for this algorithm to work the hash table must have at least one empty row.

Searching for a specific record in a hash table accommodating collisions
Table 34.21 shows an algorithm expressed in pseudo-code that can be used to search for an English-French word
pair in a hash table, HashTable, given an English word stored in the variable WordInE.
The English word may or may not be present in the hash table.
If it is, then its French equivalent is returned in variable, Retrieve otherwise message 'Not found' is returned
in Retrieve.
Clearly for this algorithm to work the hash table must have at least one empty row.

Address ← Hash(WordInE)
If HashTable[Address].Key = '-1'
 {-1 indicates field is empty}
 Then
 Begin
 HashTable[Address].EnglishWord ← WordInE
 HashTable[Address].FrenchWord ← WordInF
 End
 Else
 If Not(HashTable[Address].EnglishWord = WordInE)
 {not already stored}
 Then
 Begin
 {find empty slot)
 Repeat
 Address ← (Address + 1) Mod 523
 Until (HashTable[Address].EnglishWord = '-1')
 Or (HashTable[Address].EnglishWord = WordInE)
 {already stored}
 If (HashTable[Address].EnglishWord = '-1')
 Then
 Begin
 HashTable[Address].EnglishWord ← WordInE
 HashTable[Address].FrenchWord ← WordInF
 End
 End

Table 34.20 Hashing algorithm incorporating a linear rehash that inserts an English-French word pair into a hash table

Address ← Hash(WordInE)
Found ← False
Repeat
 If HashTable[Address].EnglishWord = WordInE
 Then Found ← True
 Else Address ← (Address + 1) Mod 523
Until Found Or (HashTable[Address].EnglishWord = '-1')
If Found
 Then Retrieve ← HashTable[Address].FrenchWord
 Else Retrieve ← 'Not found'

Table 34.21 Hashing algorithm that uses a linear rehash method to search a hash table for the French equivalent of a given English word

Free sample chapter - copyright Dr K R Bond 2021

572

Setting up a hash table that uses closed hashing
Method 1 (closed hashing or open addressing) requires that the number of rows in the table exceeds by about a
third the maximum number of records that will ever be stored in the table. When every record has been stored in
the table, the table should still contain empty rows (i.e. table should never be more than roughly two thirds full). If
this isn’t the case then search times will be extended as will the time to insert new records.
Although this might seem a waste of storage space, there is a very good reason for working in this way. Studies have
shown that the number of collisions depends on

•	 the hash keys
•	 the hash function
•	 the ratio of total number of records to total number of possible locations available to these records in the

hash table.
A perfect hash function hashes all the hash keys to hash values without the occurrence of a single collision.
That is why it is called perfect.
However, finding a perfect hash function is extremely difficult.
The effectiveness of a hash function is very sensitive to the hash key values. These are not always fully known in
advance.
Using a ratio of roughly two thirds for total number of records to total number of hash table locations seems to
minimise collisions for hash functions that are close to perfect. The hash table shown in Table 34.22 has six student
records and seven rows. One improvement could be to change the number of rows to 9 or even better, 11, a prime
number. Using a prime number for modulo arithmetic helps to minimise collisions.

However, the hash function could be further improved as well as it is far from being perfect.

The aim is to make each hash value generated by the hash function equally likely when the function is applied to
any of the possible hash keys, i.e. no one particular hash value should be more favoured than any other.

ULN Forename Surname
0 34567876 Fred Bloggs
1
2 90002789 Mary Smith
3 64156906 Alex Black
4 24567805 Visha Baal
5 74432167 Ben Brown
6 90002985 Shena Patel

Table 34.22 Hash table with not enough rows to minimise collisions

Questions
Copy and complete Table 34.23.3

ULN ULN Mod 7 ULN Mod 11
24567805
34567876
64156906
74432167
90002789
90002985 Table 34.23

Free sample chapter - copyright Dr K R Bond 2021

573

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Questions
Insert the ULNs from Table 34.23 into a copy of the hash table shown in Table 34.24 using the hashing

function,
H(ULN) = ULN Mod 7

The student Forename and Surname fields do not need to be completed.
You should deal with any collision by performing a linear rehash until an empty slot is found.

Insert the ULNs from Table 34.23 into a copy of the hash table shown in Table 34.25 using the hashing
function,

H(ULN) = ULN Mod 11

The student Forename and Surname fields may be omitted for convenience.
	

Explain how the hash table in Table 34.25 when populated with student records would be used to look up
the forename and surname of student with ULN = 24567805.

Explain how the hash table in Table 34.24 when populated with student records would be used to look up
the forename and surname of student with ULN = 24567805.

Why is it necessary to store the key field in a hash table even when an application using this hash table must
already know the value of the key field?

4

5

ULN Forename Surname
0
1
2
3
4
5
6

Table 34.24 Hash table

ULN Forename Surname
0
1
2
3
4
5
6
7
8
9
10

Table 34.25 Hash table

7

8

6

Free sample chapter - copyright Dr K R Bond 2021

574

Method 2 - open hashing or closed addressing
In this alternative method of dealing with collisions, the hash table is extended to include a pointer field. The
pointer field for each row is initialised to the null pointer value when the table is set up (⊣).
When a collision occurs the colliding record is linked to the corresponding table row by changing the pointer field
of this row to point to the colliding record as shown in Figure 34.29.

Another record colliding with row 2 will be linked or chained to the record of
'Mary Smith' by changing the pointer field of Mary’s record to point to this
record and so on, thus forming a chain of linked records or a linked list.
Method 2 is called open hashing or closed addressing because locations outside
the table are open for use by the hashing algorithm, i.e. the linked list locations,
whilst other row addresses are closed off.

Deleting a record
Care must be exercised when an entry in a hash table is deleted.
Closed hashing
In closed hashing, collisions are resolved by rehashing and storing the colliding record in another row whose table
index is the rehash value.
However, if the entry at the original hash value table index or any of the rehash value table entries are deleted and
the deleted entry remains empty, searching can be stopped prematurely before all potential matching entries have
been examined.
Therefore, a deleted entry must be distinguishable from an entry that has never been used. This requires a special
marker to be present in the key field part of the hash table entry when the entry is not in use. The special marker
will use one value to indicate that this entry has never been used and a different value to indicate that it has been
used but the entry has been deleted.
The special marker values should not use any value that potentially could occur in the key fields of the data set to be
stored in the hash table. A search should now continue until an empty unused slot (indicated by the special marker)
is encountered and not just an empty slot (which might have been used previously).

Investigation
Devise an experiment to investigate collisions on a hash table that is to store 6000 student records. Use a
random number generator to generate unique student ID numbers. Try different ratios of total number of
records to total number of table rows in the hash table.

The hash function H that we have used so far is far from perfect for many data sets that we wish to store in a
hash table. Investigate other hashing functions.

1

2

Key concept
Open hashing or closed
addressing:
In a collision, the other rows of
the hash table are closed to the
colliding record which must,
instead, be attached to the
addressed table row in a chain
or linked list of other colliding
records. The table row uses a
pointer field to point to the
linked list.

64156906 Black Alex Null

ULN Forename Surname Pointer
0 34567876 Fred Bloggs Null
1 Null
2 90002789 Mary Smith
3 24567805 Visha Baal Null
4 Null
5 74432167 Ben Brown Null
6 Null

Figure 34.29 Hash table that uses open hashing

Free sample chapter - copyright Dr K R Bond 2021

575

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Open hashing
In open hashing, collisions are resolved by chaining the colliding record to the
table entry slot whose index is the hash. Care must be taken when deleting the
record in the table row when the row has a nonempty chain.
A special marker can be left in the key field to signal that there is at least one
record in a chain (linked list) attached to the row so that a search does not fail to
look at the chain when seeking a match.
There are at least two alternatives that do not rely on a special marker.
In alternative one, the search examines the pointer field of an empty slot to see if
a chain is attached.
In alternative two, the first record in the chain is moved into the table slot whilst
preserving its link to the rest of the chain.

Information
The definitions assigned to the
terms closed hashing and open
hashing have been interchanged
over the years so care needs to
be exercised when interpreting
them. The key is to focus on
concept/method not name
and to make sure that you
understand the former.

Questions
An empty hash table is set up for open hashing. The following hashing function is to be used to store

variable names beginning with an uppercase letter in range A...Z, as well as other information.

H(VariableName)=(code for first letter of VariableName x 11) Mod M
Where M is the number of rows in the hash table.
Using M = 5 and coding letters of the alphabet as follows, A=1, B=2, ..., Z=26 show the contents of the
hash table after inserting 	the following variable names:

CHECK, OVERTIME, MAIN, P, URL, TAXRATE, INDEX, N, GENDER
You may ignore in your answer the other information associated with each variable name.

(a) Using the hashing algorithm expressed in pseudo-code below, calculate the hash value for the hash key
'PEN' stored in string variable Key. You will need access to an ASCII code table to map characters to their
equivalent ASCII codes. This is performed in the pseudo-code by the function Ord. The Length function
returns the number of characters in the string. The symbol'*' means multiply.

	 Sum ← 0
	 For i ← 0 To Length(Key)- 1
	 Sum ← Sum + Ord(Key[i]) * Ord(Key[i])
 EndFor
 HashValue ← Sum Mod 523	

(b) Now repeat the exercise with the made-up word 'NEP'.
(c) Can you see that there is a problem? What is the problem?
(d) Describe two ways that could be used to overcome this problem.

Explain why care must be exercised when deleting an entry in a hash table that uses closed hashing and on
which searching occurs after deletion.

A person owns n distinct pairs of socks, which are kept in an unmatched pile in a drawer.
Individual socks are pulled from the drawer blindly, then identified and placed in a separate pile according
to identity.
(a) How many individual socks must the person pull from the drawer to ensure that two are pulled that
match?
(b) In what respect does this process resemble a hash table and open hashing?

9

10

11

12

Free sample chapter - copyright Dr K R Bond 2021

576

Questions

In an application, student records are identified by their key field, the student’s unique learner number
(ULN) consisting of eight digits, e.g. 34567890. The application has to process a ULN allocated in the
range 1000000 to 99999999 but it will never have to deal with more than 500 ULNs.
(a) Explain why when storing student records in a table in memory it would not be sensible to use the
 ULN as the row address for the record, e.g. 34128496.
(b) Explain why the use of a hash table would be a better option for this application.
	
(a) State two advantages of using hashing and the hash table approach over the alternative approach
	 which just stores records in an ordinary table starting from the first row.
(b) It is noticed that after inserting many records into a hash table that uses closed hashing, searches are
 taking much longer than they did.
		 (i) Explain why this may be the case
		 (ii) Suggest a solution that could potentially restore searching times to what they were.

Explain why it is necessary to store the hash key in a hash table.
	

13

14

15

Free sample chapter - copyright Dr K R Bond 2021

