
1

■ 1.3 Searching algorithms
Linear search
Imagine a pile of animal name playing cards placed face down on a table in no
particular order. The playing cards are labelled ant, bee, cat, dog, and fox and the
pile is arranged as shown in Figure 1.3.1.

Searching for a particular card, say “cat”, by turning over the cards in turn,
starting from the card on top, is called a linear search. The red arrow in Figure
1.3.1 indicates the cards that have to be examined before the card labelled “cat”
is found.

Learning objectives:

■ Understand and explain how
the linear search algorithm
works

■ Understand and explain how
the binary search algorithm
works

■ Compare and contrast linear
and binary search algorithms

1 Fundamentals of algorithms
1 Fundamentals of algorithms

Figure 1.3.1 Linear search for the card labelled “cat”

fox
dog
ant
cat
bee

fox
dog
ant
cat
bee

fox
dog
ant
cat
bee

fox
dog
ant
cat
bee

Key point

Linear search:
Linear search scans each item or
element in a collection of items,
e.g. playing cards, in turn,
starting from the beginning,
until a match is found or the
end of the collection is reached.

Linear search doesn’t care
whether the list is ordered or
not.

Questions
A pack of cards is shuffled to ensure that the cards are in no particular
order and then placed face down on a table. Starting from the top of
the pack, one playing card is turned over at a time until the Ace of
Spades is found.

(a) If the task was repeated many times, shuffling the pack of 52 cards
before each new search, on average how many cards would need to be
turned over to find the Ace of Spades?

(b) What is the maximum number of cards that need turning over to
find a match?

Approximately half of the pack is removed. Starting from the top of
the pack, one playing card is turned over at a time until either the Ace
of Spades is found or all the cards have been examined.
What is the maximum number of cards that need turning over to find
the Ace of Spades or to discover that the the half-pack doesn’t contain
the Ace of Spades?

What is the maximum number of cards that have to be turned over in
the pile of cards in Figure 1.3.1 to discover that “rat” is not amongst
them?

1

2

3

Information

Linear search is often
performed on lists of things,
e.g. names

Copyright Dr K
R Bond 2016

1 Fundamentals of algorithms

2

Algorithm for linear search

Labelling the pile of animal name playing cards with the name, Vector,
enables us to refer to the card on top as the card in location Vector[1], the
card below this card as the card in location in Vector[2],
and the jth card as the card in location in Vector[j].

Labelling the card that we are searching for,
ElementSought, means that we can change this card
to a different one and continue to refer to the card to
search for by the label ElementSought. The number
of elements, NoOfElementsInVector, is 5 in our
example. The algorithm below performs a linear search on
Vector assigning to Result the position in Vector of the element if found
otherwise assigning it the value 0.

Task

Code the linear search algorithm in a programming language with
which you are familiar. Vector can be implemented as a one-
dimensional array of animal name strings or its equivalent. The animal
name to search for should be entered at the keyboard and assigned to
ElementSought. Your program should display the value assigned to
Result.

1

Key concept

Search length:
Search Length = no of elements
of the vector which are
examined before a match is
found

Key fact

Average search length:
Average search length
≈ NoOfElementsInVector

2

Linear Search Algorithm

j ← 0

Found ← False

REPEAT

 j ← j + 1

 IF Vector[j] = ElementSought THEN

 Found ← True

 ENDIF

UNTIL Found Or j = NoOfElementsInVector

IF Found THEN

 Result ← j

ELSE Result ← 0

ENDIF

1 fox
2 dog
3 ant
4 cat
5 bee

Vector

Questions

What is meant by linear search? 4

Copyright Dr K
R Bond 2016

1.3 Searching algorithms

3

Binary search
If the elements have been ordered then a much shorter average search length
can be achieved as follows:

Assuming elements in a list are stored in ascending order as shown in Figure
1.3.2, a search for an element with a particular value, e.g. “dog”, resembles the
way a telephone directory might be searched.

The approximate middle of the list is located (location labelled 5 in Figure
1.3.2) and its value examined.

If this value is too high (e.g. alphabetically) then the approximate position of
the middle element of the first half is calculated and its value examined.

If the value is too low then then the approximate position of the middle
element of the second half is calculated and its value examined.

This process continues until the desired element is found or the search interval
becomes empty.

Figures 1.3.2 and 1.3.3 show an example of binary search on an ordered list of
three-letter words. The elements in the list have been numbered, 1, 2, 3, ... 7,
8, 9, for convenience. The list is searched for the word “pig” which is located at
position 8 in the list.

The middle element, “dog” is selected first and compared with “pig”. It doesn’t
match.

As “pig” is alphabetically greater than “dog”,
the second half of the list “boy” to “red” is
chosen to search next. This second half runs
from “man” to “red”.

Its middle lies between the word “pen” and
the word “pig”. We have to choose one or the
other so the word that comes first, “pen”, is
chosen. It doesn’t match the word “pig”. As
“pig” is alphabetically greater than “pen”, the
second half of the list “man” to “red is chosen
for the next search. This second half runs from “pig” to “red”.

1 boy
2 car
3 cat
4 day
5 dog
6 man
7 pen
8 pig
9 red

Figure 1.3.2 Performing a binary search for the word “pig”
on an ordered list of words

1 boy
2 car
3 cat
4 day
5 dog
6 man
7 pen
8 pig
9 red

1 boy
2 car
3 cat
4 day
5 dog
6 man
7 pen
8 pig
9 red

Key point

Search interval:
The range over which the search
is conducted, e.g. from list
elements 1 to 9 inclusive.

Key principle

Binary search:
Searching for “pig” in the list
in Figure 1.3.2 with elements
labelled 1 to 9, the position of
the middle element is calculated
as follows

middle position = (1 + 9) div 2
 = 10 div 2 = 5

middle position = (6 + 9) div 2
 = 15 div 2 = 7

middle position = (8 + 9) div 2
 = 17 div 2 = 8
Generalising,

middle position =
 (low + high) div 2
where low is position no of
lowest item and high, position
no of highest item in list, e.g.

low = 8, item = pig
high = 9, item = red

1 boy
2 car
3 cat
4 day
5 dog
6 man
7 pen
8 pig
9 red
Figure 1.3.3 Performing a binary search for the word “pig”

on an ordered list of words

1 boy
2 car
3 cat
4 day

6 man
7 pen
8 pig
9 red

6 man

8 pig
9 red

Copyright Dr K
R Bond 2016

1 Fundamentals of algorithms

4

Binary Search Algorithm

 Result ← -1

 WHILE (Low <= High) And (Result = -1)

 Middle ← (Low + High) Div 2 {Find middle of list}

 IF ElementSought = Vector[Middle] THEN

 Result ← Middle {Found}

 ELSE

 IF ElementSought < Vector[Middle] THEN

 High ← Middle - 1 {search lower half}

 ELSE

 IF ElementSought > Vector[Middle] THEN

 Low ← Middle + 1 {search upper half}

 ENDIF

 ENDIF

 ENDIF

 ENDWHILE

Its middle lies between the word “pig” and the word “red”. We have to choose
one or the other so the word that comes first, “pig”, is chosen . It matches. So
“pig” is present in the list and is located at position 8 in this list.

Algorithm for binary search

Labelling the list to be binary searched as Vector, enables us to refer to the
first element by its location Vector[1], the next element by its location
Vector[2], and the jth element by its location Vector[j]. The range of the
vector to be searched is stored in Low and High. For example, Low = 1, High =
9 means that the beginning of the range is location Vector[1] and the end of
the range is Vector[9].

Labelling the element that we are searching for, ElementSought, means that
we can change the value to a different one and continue to refer to the element
to search for by the label ElementSought. The algorithm below performs a
binary search on Vector assigning to Result the position in Vector of the
element if found otherwise assigning it the value -1.

Questions

What is meant by binary search? 5

Key principle

Binary search:
Binary search uses a “divide and
conquer” approach to searching
a list by chopping the list into
smaller and smaller lists to
search until item found or list
cannot be divided anymore.

Copyright Dr K
R Bond 2016

1.3 Searching algorithms

5

1 ale
2 ant
3 ark
4 bat
5 boy
6 car
7 cat
8 day
9 dog

10 fox
11 jar
12 jug
13 man
14 pen
15 pig
16 red

Figure 1.3.4 Performing a binary search for the word “red”on an ordered list of words

1 ale
2 ant
3 ark
4 bat
5 boy
6 car
7 cat
8 day
9 dog

10 fox
11 jar
12 jug
13 man
14 pen
15 pig
16 red

1 ale
2 ant
3 ark
4 bat
5 boy
6 car
7 cat
8 day
9 dog

10 fox
11 jar
12 jug
13 man
14 pen
15 pig
16 red

1 ale
2 ant
3 ark
4 bat
5 boy
6 car
7 cat
8 day
9 dog

10 fox
11 jar
12 jug
13 man
14 pen
15 pig
16 red

1 ale
2 ant
3 ark
4 bat
5 boy
6 car
7 cat
8 day
9 dog

10 fox
11 jar
12 jug
13 man
14 pen
15 pig
16 red

Task

How many elements of the list in Figure 1.3.4 have to be examined
when binary searching for the element “red”?

How many elements have to be examined when binary searching for
(a) the element “day” in a list constructed from elements 1 to 8 of
 Figure 1.3.4?

(b) the element “bat” in a list constructed from elements 1 to 4 of
 Figure 1.3.4?

(c) the element “ant” in a list constructed from elements 1 to 2 of
 Figure 1.3.4?

3

4

Task

Using the list shown in Figure 1.3.4, hand trace the binary
search algorithm given above for the value “red”. Complete a
copy of the table shown below

2

Low High Middle
1 16

Copyright Dr K
R Bond 2016

1 Fundamentals of algorithms

6

Comparing linear and binary search algorithms
Table 1.3.1 summarises the outcomes of completing tasks 3 and 4. From Table

1.3.1 we conclude that for binary search the maximum
search length increases linearly when the number of
elements or items in a list doubles. For example, if the
number of items in the list is 8 (23), the maximum search
length is 3 + 1, i.e. 4 items have to be examined at most
to find a match or conclude that the sought item is not in
the list.

If we have, say, 16777216 (224) in a list, the maximum
search length is 24 + 1, i.e. 25 items have to be examined
at most to find a match or conclude that the sought item
is not in the list.

If we contrast this with linear search, then searching a list
of 8 items requires 8 items to be examined if the sought
item is the last item, i.e. maximum search length for this
linear search = 8.

Similarly, searching a list of 16777216 items requires
16777216 items to be examined if the sought item is the
last item, i.e. maximum search length for this linear search
= 16777216.

Table 1.3.2 compares binary search with linear search
for different lengths of list. This table shows clearly that
binary search is more efficient than linear search,
timewise. Each element or item of a list that has to be
examined costs time. If, for argument’s sake, it takes
one microsecond to examine an item, then for a list of

16777216 items, binary search will take a maximum of 25 microseconds whilst
linear search will take 16777216 microseconds or approximately 17 seconds.

We may draw a similar conclusion for the average search length.

Binary search can only be performed on ordered lists whereas linear search
can be performed on both ordered and unordered lists. Sorting a list into
order will take time but once ordered binary search will perform searches
on the list faster than linear search will on the unordered list with the speed
adavantage increasing with the size of the list.

Key fact

Binary search versus linear
search:
Binary search is more efficient
timewise than linear search.

Key fact

Binary search versus linear
search:
Binary search can only be
performed on ordered lists,
linear search can be performed
on both ordered and unordered
lists.

No of items
in list

Maximum
search length
binary search

Maximum
search length
linear search

1 1 1
2 2 2
4 3 4
8 4 8
16 5 16

32768 16 32768
65536 17 65536

16777216 25 16777216

Table 1.3.2 Comparing maximum search length for
binary and linear searches

No of items
in list

No of items
in list as a
power of 2

Maximum
search length

1 20 1
2 21 2
4 22 3
8 23 4
16 24 5

Table 1.3.1 Relationship between maximum search
length and no of items in list for binary searchCopyright Dr K

R Bond 2016

1.3 Searching algorithms

7

In this chapter you have covered:

 ■ linear search algorithm scans a list from the beginning until a match is
 found or the end of the list is reached.

 ■ binary search algorithm uses a “divide and conquer” approach to
 searching a list by chopping the list into smaller and smaller lists to search
 until item found or list cannot be divided anymore.

 ■ binary search is more efficient than linear search, timewise, because it
 examines less elements of a list

 ■ binary search can only be performed on ordered lists

 ■ linear search can be performed on both ordered and unordered lists

Questions

State two requirements that a list must satisfy for an item to
be found using binary search.

Explain why binary search is more efficient than linear
search, timewise.

State whether it is possible to search an unordered list using
(a) binary search
(b) linear search

6

7

8

Copyright Dr K
R Bond 2016

