
330

■ 7.2 Structured Query Language

Querying a database
The main purpose of storing data in a database is to enable applications to
interrogate the database for information. This interrogation is called querying
the database.

Structured Query Language (SQL)
Structured Query Language (SQL) can be used to query a database. It is a
simplified programming language.

Retrieving data from a single table
Table 7.2.1 shows data for the Student table with structure

Student (StudentId, StudentName, Gender)
The following query, expressed in SQL, will retrieve all of the data in the
Student table

SELECT *

 FROM Student;

The wildcard character * matches the attribute/field list

StudentId, StudentName, Gender

The ANSI/ISO SQL standard requires that a semicolon is used at the end of
the SQL statement but some systems relax this requirement. When writing
SQL the convention is to use upper case for the SQL commands.

If we wanted just the data for StudentName we would refine the query as
follows

SELECT StudentName

 FROM Student;

Learning objectives:

■ Be able to use SQL to retrieve
data from a relational
database, using the commands

• SELECT

• FROM

• WHERE

• ORDER BY...ASC |
DESC

■ Be able to use SQL to insert
data into a relational database
using the command:

INSERT INTO table_name
(column1, column2, ...)
VALUES (value1, value2, ...)

■ Be able to use SQL to edit
and delete data in a relational
database using the commands:

UPDATE table_name
SET column1 = value1,

column2 = value2, ...
WHERE condition

DELETE FROM table_name
WHERE condition

7 Relational databases and structured query language (SQL)

and structured query language (SQL)
7 Relational databases

StudentId Student
Name Gender

1 Ames M
2 Baloch F
3 Cheng F
4 Dodds M
5 Groos M
6 Smith F

Table 7.2.1 Table Student

Cop
yri

gh
t D

r K
R B

on
d 2

02
0

7 Relational databases and structured query language (SQL)

331

We could refine the search even further by adding a WHERE clause that applies a search condition as follows

SELECT StudentName

 FROM Student

 WHERE Gender = 'F';

The result set that would be returned when this query is applied to table Student would be as follows
Baloch
Cheng
Smith

because only these rows of the table match the search condition Gender = 'F'.

Gender = 'F' is actually called a predicate because it evaluates to either TRUE or FALSE.

If we also wanted the values of StudentId returned then the query would be

SELECT StudentId, StudentName

 FROM Student

 WHERE Gender = 'F';

Retrieving data from multiple tables
Table 7.2.2 shows data in table form for the Ward table with
structure

Ward (WardName, NurseInCharge, NoOfBeds)

Table 7.2.3 shows data in table form for the Patient table with
structure

Patient (PatientId, Surname, WardName)

The two tables are linked via a shared or common attribute
WardName. The existence of an attribute common to both tables is
not enough to join data from the corresponding tables correctly, as
the following SQL query demonstrates

SELECT Ward.WardName, Ward.NurseInCharge,

 Patient.PatientId

 FROM Ward, Patient;

The part of the query Ward.WardName references the WardName
attribute in table Ward and the part Patient.PatientId references
PatientId attribute in table Patient.

The FROM Ward, Patient part joins both relations without regard
for the way that the data is actually linked via matching values of the
shared attribute, WardName. The result set returned by the query is
shown in Table 7.2.4.

Questions

Write an SQL query that returns the names of all students in Table 7.2.1 who are male.1

WardName NurseInCharge NoOfBeds
Victoria Sister Bunn 30

Aylesbury Sister Moon 40

Table 7.2.2 Table Ward

PatientId Surname WardName
1 Bond Aylesbury
2 Smith Victoria
3 Jones Aylesbury
4 Biggs Victoria

Table 7.2.3 Table Patient

Victoria Sister Bunn 1

Victoria Sister Bunn 2

Victoria Sister Bunn 3

Victoria Sister Bunn 4

Aylesbury Sister Moon 1

Aylesbury Sister Moon 2

Aylesbury Sister Moon 3

Aylesbury Sister Moon 4

Table 7.2.4 Result set ignoring
relationship between Ward and Patient

Cop
yri

gh
t D

r K
R B

on
d 2

02
0

7.2 Structured Query Language

332

When the search condition

WHERE Ward.WardName = Patient.WardName

is added to the SQL query, we are able to exclude values that are not linked by the attribute WardName and to
include only those that are. This SQL query will return the result set that
corresponds to the real world situation shown in Table 7.2.5.

The two relations have been joined on their common attribute, WardName, i.e.
where the value of WardName is the same in both tables.

Writing the query as follows would return the same result set because dropping
the table name prefix before NurseInCharge and PatientId in the SELECT part of the SQL query is allowed where
there is no ambiguity as to what is intended.

Ordering the result set returned by a query
We can order a result set returned by a query in ascending or descending order with the keyword ORDER BY
qualified by one of the keywords ASC or DESC. If the qualifier is omitted then ASC is assumed. For example, we
can place the result set returned in ascending
order on WardName by the query opposite.

Table 7.2.6 shows the outcome of applying this
query to the Ward and Patient tables.

Aylesbury Sister Moon 1

Victoria Sister Bunn 2

Aylesbury Sister Moon 3

Victoria Sister Bunn 4

Table 7.2.5 Result set taking
account of relationship between

Ward and Patient

SELECT Ward.WardName, Ward.NurseInCharge, Patient.PatientId

 FROM Ward, Patient

 WHERE Ward.WardName = Patient.WardName;

SELECT Ward.WardName , NurseInCharge, PatientId

 FROM Ward, Patient

 WHERE Ward.WardName = Patient.WardName;

Questions

Write the SQL query that returns from Tables 7.2.2 and 7.2.3 the name of the nurse in charge of the ward,
surnames of all patients in this ward and the ward name.

2

Aylesbury Sister Moon 1

Aylesbury Sister Moon 3

Victoria Sister Bunn 2

Victoria Sister Bunn 4

Table 7.2.6 Result set ordered
on WardName in ascending

alphabetic order

SELECT Ward.WardName, NurseInCharge, PatientId

 FROM Ward, Patient

 WHERE Ward.WardName = Patient.WardName

 ORDER BY Ward.WardName ASC;

Questions

Write the SQL query that returns the names of both nurses and their
patients, from Tables 7.2.2 and 7.2.3, ordered in descending patient
name order.

3

Cop
yri

gh
t D

r K
R B

on
d 2

02
0

7 Relational databases and structured query language (SQL)

333

Relational or comparison operators for
search condition
Table 7.2.7 shows comparison operators that may be used
in SQL queries.

Table 7.2.8 shows the outcome of applying this query to
the Patient table.

SELECT PatientId, Surname

 FROM Patient

 WHERE PatientId <> 2;

Table Country has the structure

Country (Name, Capital, Population, Area)

Table 7.2.9 shows some data for table Country.

The result set returned when the following SQL query

is applied to this Country table with attributes
Name, Capital, Population, Area is shown below

Comparison
Operator

Description

= Equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
<> Not equal to

Table 7.2.7 Comparison operators for SQL queries

1 Bond
3 Jones
4 Biggs

Table 7.2.8 Result set for
PatientId <> 2

Name Capital Population Area
Argentina Buenos Aires 32 300 003 2777815

Bolivia La Paz 7 300 000 1098575

Brazil Brasilia 150 400 000 8511196

Canada Ottawa 26 500 000 9976147

Chile Santiago 13 200 000 756943

Colombia Bagota 33 000 000 1138907

Cuba Havana 10 600 000 114524

Ecuador Quito 10 600 000 455502

El Salvador San Salvador 5 300 000 20865

Guyana Georgetown 800 000 214969

Table 7.2.9 Table Country showing some values

SELECT Name, Capital, Population

 FROM Country

 WHERE (Population < 7000000);

El Salvador San Salvador 5300000

Guyana Georgetown 800000

5

Questions

Write the SQL query that returns the patient surnames from Table 7.2.3, for which the patient identifier is
less than or equal to 3. Order the result set in descending order of patient identifier (PatientId is the patient
identifier).

What result set is returned when this SQL query is applied to the data in Table 7.2.9?

SELECT Capital, Population, Area

 FROM Country

 WHERE (Population > 32000000);

4

5

Cop
yri

gh
t D

r K
R B

on
d 2

02
0

7.2 Structured Query Language

334

Deleting data in a single table
The DELETE statement is used to delete rows of a table.

DELETE FROM table_name

 WHERE some_column = some_value;

The WHERE clause specifies which row or rows should be deleted. If the WHERE clause is omitted, all rows will
be deleted!

For example referencing Table 7.2.9,
DELETE FROM Country

 WHERE Capital = 'Brasilia';

deletes the row Brazil, Brasilia, 150400000, 8511196.

Inserting data in a single table
The INSERT INTO statement inserts a new row into a table. It is possible to write this statement in two forms.

The first form does not specify the column names where the data will be inserted, only their values:
INSERT INTO table_name

 VALUES (value1, value2, value3, ...);

The second form specifies both the column names and the values to be inserted:

INSERT INTO table_name (column1, column2, column3, ...)

 VALUES (value1, value2, value3, ...);

In the first form, a value of the correct data type must be supplied for every attribute of the table and the order of
the supplied values must be the same as the corresponding columns in the table.

In the second form, a value for every specified column must be supplied and each value must match in data type the
corresponding specified column, i.e. value1 corresponds to column1, value2 to column2, etc. The value Null will be
inserted for any columns not referenced.

For example, for table Ward, Table 7.2.2, reproduced here

First form:
INSERT INTO Ward VALUES ('Gresham', 'Mr Oonga', 20);

This first form creates a new row in Table 7.2.2 with values
'Gresham', 'Mr Oonga', 20

Second form:
INSERT INTO Ward (WardName, NurseInCharge) VALUES ('Savernake', 'Sister Teng');

This second form creates a new row in Table 7.2.2 with values 'Savernake', 'Sister Teng', Null

Questions

Write the SQL statement to delete the row with BorrowerId 3 in
the Borrower table shown in Table 7.2.10.

Write the SQL statement to delete the row(s) with
Population > 15000000 in the Country table shown in Table 7.2.9.

6

7

BorrowerId Surname Initial
1 Smith K
2 Barnes W
3 Minns M

Table 7.2.10 Table showing some
values for the table Borrower

WardName NurseInCharge NoOfBeds
Victoria Sister Bunn 30

Aylesbury Sister Moon 40

Table 7.2.2 Table Ward

Cop
yri

gh
t D

r K
R B

on
d 2

02
0

7 Relational databases and structured query language (SQL)

335

Updating data in a single table
The UPDATE statement is used to update an existing row of a table.

UPDATE table_name

 SET column1 = value1, column2 = value2, ...

 WHERE some_column = some_value;

For example,

UPDATE Ward

 SET NurseInCharge = 'Mr Ali', NoOfBeds = 25

 WHERE WardName = 'Victoria';

Questions

Write the SQL statement to update the row of the Country table (Table 7.2.9) for 'UK' to add population
64100000, area 243610. Assume that an insert statement has inserted 'UK', 'London' already as in Q9.

10

SQL Tutorials
SQL tutorials are available at https://www.w3schools.com/sql/default.asp.

It is also possible to explore SQL locally by first installing a database engine and then a tool which supports the
execution of SQL against a database accessed
through the database engine.

SQLite is a self-contained, server-less, zero
configuration, transactional SQL database engine.
The code for SQLite is public domain and is
thus free for use for any purpose, commercial or
private. It can be obtained from
http://www.sqlite.org/.

An easier route to using SQLite is to download
DB Browser for SQLite from
https://sqlitebrowser.org/. This application
takes care of the installation of both the SQLite
database engine and an interface for executing
SQL - see Figure 7.2.1.

Questions

Write the SQL statement to add a new row to the Ward table (Table 7.2.2) for ward 'Amersham',
containing 25 beds. The nurse in charge is 'Sister Brody'.

Write the SQL statement to add a new row to the Country table (Table 7.2.9) for 'UK', 'London'.

8

9

Figure 7.2.1 DB Browser for SQLite

Cop
yri

gh
t D

r K
R B

on
d 2

02
0

7.2 Structured Query Language

336

After installing DB Browser for SQLite, launch the application. The user interface for DB Browser for SQLite is
shown in Figure 7.2.2.

Download the Hospital.db, Country.db, Library.db and School.db databases from

www.educational-computing.co.uk/aqacs/gcse8525.html.

Open Hospital.db database using the Open Database button. Figure 7.2.3 shows that the opened database
consists of two tables Patient and Ward.

The data stored in the Ward table is revealed by executing the SQL query

SELECT * FROM Ward;

Figure 7.2.2 DB Browser for SQLite user interface

Figure 7.2.3 Execute SQL tab

Executes the SQL statement that starts in the current line

Executes all the
SQL statements
in the SQL
window Cop

yri
gh

t D
r K

R B
on

d 2
02

0

7 Relational databases and structured query language (SQL)

337

Figure 7.2.4 shows the result of executing the SQL query

SELECT Ward.WardName, NurseInCharge, PatientId

 FROM Ward, Patient

 WHERE Ward.WardName = Patient.WardName

 ORDER BY Ward.WardName ASC;

In this chapter you have covered:
 ■ How to use SQL to retrieve data from a relational database, using the commands

• SELECT

• FROM

• WHERE

• ORDER BY...ASC | DESC
 ■ Using SQL to insert data into a relational database by using the command

INSERT INTO table_name
(column1, column2, ...)
VALUES (value1, value2, ...)

 ■ Using SQL to edit and delete data in a relational database by using the commands

UPDATE table_name
SET column1 = value1,
 column2 = value2, ...
WHERE condition

DELETE FROM table_name
WHERE condition

Cursor in this line
and execute current
line icon clicked

Figure 7.2.4 Querying Ward and Patient tables

Tasks
Try all the SQL examples in this chapter in DB
Browser for SQLite.

1

Cop
yri

gh
t D

r K
R B

on
d 2

02
0

