
323

Class and object diagrams27
Class diagrams

Purpose: To learn how to create class diagrams
Single inheritance, association, aggregation and composition were covered in a
practical way in Chapter 22 and Chapter 24.
A class diagram is used to show the relationships/associations between classes.
Figure 27.1 shows how single inheritance is represented in a class diagram
consisting of two classes A and B. Class B is the derived class or subclass which
inherits from class A. Each class is drawn as a labelled rectangle.

Figure 27.2 shows how aggregation (variable
aggregation) is represented in a class diagram
consisting of three classes C, D and E.
In the whole/part association known as
aggregation, Classes C and D are the whole
and class E is the variable set of component
objects part.

Figure 27.3 shows how composition (fixed
aggregation) is represented in a class diagram
consisting of two classes F and G. In the
whole/part association known as composition,
Class F is the whole and class G is the part. The
aggregate object (class F object) cannot exist without
its component objects drawn from class G.

Figure 27.4 shows how association is represented in
a class diagram consisting of two classes H and I. The
direction of the arrow indicates that the association
is from H to I, e.g. "teacher teaches student" where
"teacher" corresponds to H and "student" corresponds
to I. The association is "teaches". Figure 27.5 shows
how association of the dependency kind is represented
in a class diagram. The direction of the arrow indicates
that the association is from J to K, e.g. "snake uses
ground" where "snake" corresponds to J and "ground"
corresponds to K.

The class diagrams shown so far have omitted the detail of each class. This
is fine if all that is of interest is the kind of relationship or association, e.g.

B

A

means single inheritance

Fig. 21.1 Shows how single
inheritance is represented in a
class diagram

C D

E

means aggregation

Fig. 27.2 Shows
how aggregation is
represented in a class
diagram

G

F

means composition

Fig. 27.3 Shows
how composition is
represented in a class
diagram

Questions
What is the symbol used on a class diagram to indicate
(a) single inheritance (b) composition (c) aggregation
(d) association (e) dependency?

1

K

J

means dependency

Fig. 27.5 Shows how
dependency is represented
in a class diagram

I

H

means association

Fig. 27.4 Shows
how association is
represented in a class
diagram

Teaches

Uses

Cop
yri

gh
t D

r K
R B

on
d 2

01
9

HOW TO PROGRAM EFFECTIVELY IN DELPHI

324

single inheritance. However, sometimes a more informative and detailed class diagram is required. Each class in
this more detailed class diagram would show details of its attributes and methods and their access level specifiers
as shown Figure 27.6. The bubble shows an example of the contents of a class rectangle. Figure 27.7 shows the
interpretation of the access level specifiers.

Single inheritance class diagram
Figure 27.8 shows an example based on an exercise used in Chapter 23.
Figure 27.9 class diagram is a more detailed version of Figure 27.8. The attributes section is omitted in Figure
27.9 from classes Duck and Crow because the exercise in Chapter 23 did not supply these.

Fig. 27.6 Each class diagram is shown in more detail by splitting the rectangle into an attributes part and a
methods part

– means private+ means public

Access level speci�ers

means protected
Fig. 27.7 Access level specifiers for attributes and methods

Bird

Duck Crow

Fig. 27.8 Class diagram
demonstrating single inheritance

Bird
- Name : String

+ GetName : String
+ MakeSound
+ Create(BirdName : String)

Duck

+ MakeSound

Crow

+ MakeSound

Fig. 27.9 Class diagram demonstrating single
inheritance and showing attributes and methods

Class Name

Class Name

Class Name

Class Name

Class Name

Class Name

Class Name

Class Name

Class Name
– attribute1 : Type

+ attribute2 : Type
attribute3 : Type+ methodA(arg list) : return type

+ methodB(parameter list)
+ methodD(parameter list)

+ methodC(arg list) : return type

Methods

Attributes

Methods Methods Methods

Attributes AttributesAttributes

MethodsMethods Methods Methods

AttributesAttributes AttributesAttributes

Cop
yri

gh
t D

r K
R B

on
d 2

01
9

325

Figure 27.9 shows the visibility levels of the attribute Name and the three methods GetName, MakeSound and
Create. Visibility level is indicated by placing an access modifier or access/visibility level specifier, one of ‘‒’, ‘ +’,
or ‘ #’, before the attribute or method identifier.

If an attribute or method is private then the symbol used is ‘ ‒’.

If an attribute or method is public then the symbol used is ‘+’.

If an attribute or method is protected then the symbol used is ‘#’.

Composition class diagram
Figure 27.10 shows a composition class diagram for a noughts and crosses
grid such as that shown in Figure 27.11. Composition on this class diagram is
indicated by a filled diamond and line.
The degree of the association is shown as one grid is associated with nine squares
by labelling the diamond with 1 and the other end of the composition symbol
with 9. If the degree of association is variable then the 9-end is replaced by n.

In composition, a composition hierarchy defines how an object is composed of other objects in a fixed relationship.
The aggregate object cannot exist without its component objects. For example, a car comprises a body shell, an
engine, a gearbox, seats, etc. A clock comprises a clock face, hands and clock mechanism. A car would not be a
car without its components and a clock would not be a clock without its components. Therefore, we can say that
composition is a fixed whole/part relationship, i.e. a special form of aggregation called fixed aggregation.

Questions
Pythons and cobras are types of snake. Draw a single inheritance class diagram which shows the relationship
between these three types if each is modelled as a class.

2

Grid

Square

1

9

Fig. 27.10 Class diagram
demonstrating composition

1 2 3

4 5 6

7 8 9

Fig. 27.11 Noughts and crosses grid

Questions
A snake has a fang. Draw a class diagram to show the relationship between snakes and fangs if each is
modelled as a class.

3

Key concept

Composition:
A whole/part relationship
or association in which the
aggregate object cannot exist
without its components.
In composition, a composition
hierarchy defines how an object
is composed of other objects in
a fixed relationship.

Cop
yri

gh
t D

r K
R B

on
d 2

01
9

326

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Composition (fixed aggregation) is primarily a relationship between objects as is aggregation in general, rather
than a relationship between classes. A good test for a case of any form of aggregation is the "has a" test. Describe
the collection of objects first. If the phrase "has a" crops up between two objects then the first is composed of the
second. For example, "a car has a body shell", "a car has a gearbox", etc. If none of the part objects are essential for
the whole object to exist (i.e. the part objects can stay or go) then the association is just aggregation not the more
restrictive form, composition.

Aggregation class diagram
Figure 27.12 shows a class diagram for
aggregation. An unfilled diamond and line are
used to indicate aggregation. The multiplicity of
the relationship is indicated with '1' and '*' as
shown and meaning one ('1') TutorGroup object
is associated with many ('*') Student objects.
Aggregation is a whole/part association in
which an object is composed of a variable set
of component objects, e.g. an object of type
TutorGroup can be associated with more than
one object of type Student class, and different
Student objects at different times. Similarly an object of type SportsTeam class can be associated with more than
one object of type Student class, and different Student objects at different times. In each case, the objects chosen
from the Student class are not always the same.

The whole can also exist without the part, e.g. a car boot object when empty.

To illustrate this consider the class diagram in Figure 27.13. This shows both composition and aggregation. The
clock object cannot exist in the real world without its component objects, clock face, mechanism and hands but it
can exist without its two batteries. These could be removed and used in another clock or device. Everyone knows
that batteries have an independent existence.

Key concept
Aggregation:
It is a whole/part relationship or
association in which an object
is composed of a variable set
of component objects, e.g. a
SportsTeam object composed
of student objects, and the
ones used are not always the
same. Part objects are not
essential for the whole object
to exist, e.g. an empty car boot
object. The part is also capable
of an independent existence,
e.g the contents of a car boot.
It is possible for a part to be
associated with more than one
whole (not necessarily at the
same time).

TutorGroup

- TutorGroupName : String
...
...
...

SportsTeam

- SportsTeamName : String
...
...
...

1 1

* *
Student

- StudentName : String
...

Fig. 27.12 Class diagram demonstrating aggregation

Clock

ClockFace Mechanism

Battery

Hand

2

2 1
1

1 1

Fig. 27.13 Class diagram demonstrating fixed aggregation
(composition) and variable aggregation (aggregation)

Cop
yri

gh
t D

r K
R B

on
d 2

01
9

327

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Fixed aggregation or composition
An object is composed of a fixed set of component objects, e.g. a rectangle
is composed of four right-angle lines enclosing an area. The rectangle
would not be a rectangle without all four lines - Figure 27.14.

Variable aggregation (aggregation)
An object is composed of a variable set of
component objects, e.g. a car boot object can
contain a variable number of objects and the
ones used are not always the same - Figure
27.15. Multiplicity notation 0..* means zero or
more.

Recursive or reflexive aggregation
The object contains components of its own
type, like a Russian doll (each one containing
a smaller one). For example, a rectangle object
could contain two smaller rectangle objects -
Figure 27.16.

Has/Has-a or is-a-part-of or contains relationship
Describe the collection of objects first. If the phrase "has a" or "has" or "is a part

of" or "contains" crops up between two objects then the first is composed of the second or is an aggregate of the
second.

Questions
A universal remote control is a part of home entertainment systems which consist of televisions, a cable TV
set top box, blu-ray players and other electronic devices.

Draw a class diagram that shows the type of association between a universal remote controller and two types
of electronic device, a TV and a blu-ray player if these are modelled as classes.

Draw a class diagram that shows the type of association between the wardrobe and its contents.

Draw a class diagram that shows the type of association between a bicycle object and the following objects:
frame, handlebars, gears, wheels, brakes, removable lights.

4

5

6

TRectangle

TLine

1

4

Fig. 27.14 Composition class diagram

TCarBoot

TObject

1

0..*

Fig. 27.15 Aggregation class diagram

TRectangle

1

2

Fig. 27.16 Recursive
aggregation class diagram

Cop
yri

gh
t D

r K
R B

on
d 2

01
9

328

Association
It is likely that you will encounter association
which isn’t a whole/part association(aggregation or
composition).
Figure 27.17 shows an association class diagram for a
Teacher class and a Student class. The association is
one in which a teacher teaches a student. Clearly, this is
not a whole/part association, i.e. a student is not a part
of a teacher.
Contrast this with the example in Figure 27.12 in
which a tutor group has many students and a sports
team has many students.
The grid for noughts and crosses shown in Figure
27.11 does have an association relationship in addition to its aggregation one, it is a uses association: a noughts and
crosses game uses a grid. This uses association is shown in Figure 27.18 and is a dependency association.

Bi-directional association also exists in which case the arrow has an arrowhead at each end.

In general, association is a type of relationship in which one object interacts with or uses another.
When the type is 'uses' we use the term dependency or dependency association. Dependency is a weaker variant of
association between otherwise unrelated classes, such as between 'snakes' and 'long grass' – snakes use long grass to
hide.

The most common usage of a dependency is to show that a method belonging to one class uses another class when an
object of the one uses an object of another as a method parameter. For example, an application object, Application,
of the class TApplication calls the method Application.CreateForm with the object parameter Form1 of class
TForm1 as shown below and in Figure 27.19.

Application.CreateForm(TForm1, Form1);

Dependency also occurs when an object of one class
inititates another object which is also the case in the
example in Figure 27.19.

Dependency is shown as a dotted line with an arrowhead.

Questions
A doctor can be associated with multiple patients. At the same time, one patient can visit multiple doctors for
treatment or consultation. Each of these objects has its own life cycle and there is no "owner" or parent. The
objects that are part of the association relationship can be created and destroyed independently.

Draw a class diagram that shows the type of association between doctor and patient.

7

Game GridUses
1 1

Fig. 27.18 Association class diagram for noughts
and crosses game

Teacher Teaches Student
1 *

Fig. 27.17 Class diagram demonstrating association

TApplication

CreateForm(TForm1, Form1)
Initialize

Run
........

TForm1Uses

Fig. 27.19 Dependency class
diagram for TApplication and
TForm1

Cop
yri

gh
t D

r K
R B

on
d 2

01
9

329

HOW TO PROGRAM EFFECTIVELY IN DELPHI

A class diagram shows the static relationships between classes. When two classes are connected by a relationship, the
connection is called an association.

Associations may be classified as

• a dependency (uses)

• an aggregation

• a composition (a strong form of aggregation)

• inheritance (yes, even inheritance which is a
generalisation/specialisation relationship or
association)

• and if not any of the above then just an association

This is shown in Figure 27.20.

Multiplicity

We can assign a multiplicity (also known as arity) to
an association e.g. 1 and * as shown in Figure 27.17.
Multiplicity specifies the number of objects in one class that
relate to a single object of the associated class.

• 1 - one instance (exactly one) of the class, i.e. one object

• 0..1 - zero or one instances of the class, i.e. zero or one objects

• 0..* - zero or more instances of the class, i.e. zero or more objects

• 1..* - one or more instances of the class, i.e. one or more objects

• * - many instances of the class, i.e. many objects

• 0,3 - zero or three instances of the class, i.e. zero or three objects

• 5..10 - five through ten instances of the class, i.e. 5 or 6 or 7 or 8 or 9 or 10 objects.

When no multiplicity is given, it is assumed to be 1.

Navigability

Figure 27.17 expresses that Teacher must “know about” Student, but does Student need to know about
Teacher?

This is known as navigability, i.e. how we can move from one object to another.

Navigability is represented in a class diagram by adding one or two arrows to the line representing an association or by
using two single arrow lines as shown in Figure 27.22.

Composition
Association

Aggregation
Inheritance Dependency

Fig. 27.20 Composition, Aggregation, Inheritance,
Dependency are all forms of association

A B1 1

A B1 0..1

A B1 0..*

A B1 1..*

A B1 *

A B1 0,3

A B1 5..10

Fig. 27.21 Multiplicity

Teacher
Teaches

Student
1

1

*

* IsTaughtBy

Fig. 27.22 Class diagram demonstrating two way association

Cop
yri

gh
t D

r K
R B

on
d 2

01
9

330

To emphasise one-way navigation for composition or aggregation an arrow head can be added as shown in Figure
27.23.

Object diagrams

Purpose: To learn how to create object diagrams
Figure 27.24 shows an object diagram for three objects, Person1, Dog1 and Bird1 that have been created from the
classes, Person, Animal, Dog and Bird shown in the class diagram Figure 27.25.

Windows form application
Figure 27.26 shows class and object diagrams for a windows form application with one button and three edit
boxes.

Grid

Square

1

9

Fig. 27.23 Class diagram showing one way navigation

Fig. 27.25 Class diagram showing four classes, Person, Animal, Dog and Bird

Owns

1 1..*
Person

-Name : String
-Address : String
-City : String
-Postcode : String

+ShowName
+ChangeName

+ChangeAddress
+ShowAddress

etc

Animal

-Name : String
-Owner : Person

Name = 'Rover'
Breed = 'Labrador'

+ShowName
+ChangeName
etc

Dog

-Breed : String

+ShowBreed
etc

Bird

-Species : String
-Wingspan : Float

+ShowSpecies
etc

Dog1 : Dog

Name = 'Rover'
Breed = 'Labrador'

Owns

Owns Bird1 : Bird

Name = 'Tweety'

Wingspan = 6.5
Breed = Sparrow

Person1 : Person

Name = 'Fred Bloggs'
Address = 'Dingley Dell'
City = 'Never Never Land'
Postcode = 'HP21 7RP'

Fig. 27.24 Object diagram showing three objects,
Person1, Dog1 and Bird1

Can just write :Person, :Dog, :Bird
in place of Person1 : Person, Dog1 : Dog,
Bird1 : Bird

TForm

TForm1

TApplication

TForm1

TButton TEdit

1

3

Uses

1

1

Application : TApplication

Form1 : TForm1

Button1: TButton Edit1 : TEdit

Edit2 : TEdit

Edit3 : TEdit

Fig. 27.26 Class and object diagrams for a windows form application consisting of five objects

Cop
yri

gh
t D

r K
R B

on
d 2

01
9

331

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Interface class diagram
Figure 27.27 shows an interface diagram for the diet exrcise of Chapter 26.

TMeatDiet
+Function GetDiet : String

IDiet
<<Interface>>

+Function GetDiet : String

+Function GetDiet : String

TVegetarianDiet

Fig. 27.27 Interface diagram for IDiet interface

Cop
yri

gh
t D

r K
R B

on
d 2

01
9

