
152

FireMonkey components 242

Developing with FireMonkey components
Purpose: To understand how to create custom styles with FireMonkey

Start a new Blank Multi-Device Application.
Save in a separate folder CustomStyleTest as

CustomStyleTestProject.dproj

and CustomStyleTestUnit.pas.

Add a TPanel component, Panel1, to the form. Adjust size

of form so that it is just greater than Panel1 as shown in

Figure 42.1. Select Windows 64-bit and right click Panel1

on the form and select Edit Custom Style to bring

up the Style Designer - Figure 42.4. As TPanel inherits

from TRectangle, the Style Designer shows a TRectangle

control. This control has a Fill property. Change the

Fill|Color to Chartreuse and change the Name field to

PanelStyleChartreuse. The Platform field in the Style

Designer - Figure 42.4 - shows Windows 10 Desktop so this

custom style will apply to Windows 10 Desktop applications

only. Close the Style Designer by clicking the cross in the

tab and click Yes when prompted to apply

changes.

If this is the first time that changes are
applied, Delphi adds a TStyleBook
component, TStyleBook1, to the form as
shown in Figure 42.2. The TPanel control’s
colour is now Chartreuse.
The available styles are revealed by expanding
Styles in the Structure window, - Figure 42.3.

Fig. 42.1 CustomStyleTestUnit form,
Panel1 right clicked

Fig. 42.2 Panel1 now filled with colour Chartreuse and
StyleBook1 added

Fig. 42.3 Structure window

© D
r K

R B
on

d 2
02

0

HOW TO PROGRAM EFFECTIVELY IN DELPHI

153

Figure 42.5 shows that the StyleName property field has been set to Panel1Style1 for
PanelStyleChartreuse.
Figure 42.6 shows that a new custom style named Panel1Style1 has been created and applied to the
StyleLookUp field of Panel1. The default style is panelstyle, the intial style for Panel1.

Fig. 42.4 Style Designer

Fig. 42.6 Object Inspector reveals new style
added to StyleLookUp

Fig. 42.5 Object Inspector reveals new
style as StyleName Panel1Style1

© D
r K

R B
on

d 2
02

0

154

Purpose: To learn how to use anchors

Anchors are used to set the way a control resizes and moves around when the
form changes. Each control has 0 to 4 anchors.

The position of the control relative to one or more edge(s) of parent may be set
as follows:

• Top

• Bottom

• Left

• Right

• Any combination of the above

The default is Top, Left.

Typically, the Object

Inspector is used to set the
values of these anchors at
design time. Figure 42.7
shows the Anchors property
in the Object Inspector. The
anchors have field names
akLeft, akTop, akRight and
akBottom.

The custom-styled TPanel
control, Panel1, shown in
Figure 42.8 is contained within
its parent, a TForm control, Form1.

Figures 42.9, 42.10, 42.11, 42.12 show the effect of the different anchors when
applied singly to the TPanel control of Figure 42.8 and the form, Form1, is
enlarged at design time. Note that the width and height of Panel1 remain
unaltered. Figure 42.13 shows the result of enlarging the form in Figure 42.8 when
both Left and Top anchors of the TPanel control are selected. Note that the width and
height of Panel1 again remain unaltered.

Figure 42.14 shows the result of enlarging the form in Figure 42.8 at design time when all four anchors are
selected. The width and height of Panel1 change.

Fig. 42.9 No anchors, form
enlarged

Fig. 42.10 Anchor - Left,
form enlarged

Fig. 42.11 Anchor - Top,
form enlarged

Fig. 42.12 Anchor - Right,
form enlarged

Fig. 42.13 Anchor - Left,
Top, form enlarged

Fig. 42.14 Anchor - Left,
Top, Right, Bottom form

enlarged

Fig. 42.7 The Anchors property exposed in the
Object Inspector

Fig. 42.8 Master view of Form1
containing custom-styled TPanel

control, colour Chartreuse

TPanel control

TForm control,
Form1

© D
r K

 R
 B

on
d 2

02
0

155

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Purpose: To learn how to use alignment

The anchors property enables a control to maintain a specified relationship with an edge
of a parent as illustrated in the last section. If instead, we want the control to lie along an
edge of its parent then we use the Align property of the control. The default is None.

Figure 42.15 shows the result of using the Object Inspector to set the Align property to
Bottom, of the custom-styled TPanel control, Panel1, shown in Figure 42.8. The height
value of Panel1 in Figure 42.8 is preserved but its width and position
are changed so that it lies along the bottom edge. Now, when the form is
enlarged, the height of Panel1 is preserved but its width increases so that it
continues to lie along the bottom edge - Figure
42.16. The respective effect for the other edges is
achieved with alignment settings Top, Left and
Right. Figure 42.17 shows that when Align is
Top, Panel1’s position changes and its width
increases so that it lies along the top edge, but the
height of Panel1 remains the same.

Figure 42.18 shows that when Align is Left, its
position changes and its height increases so that it lies along the left edge, but the
width of Panel1 remains the same.

Figure 42.19 shows the effect on Panel1 in Figure
42.8 when Align for Panel1 is set to Center (US
spelling). The width and height of Panel1 are
unaltered.

Figure 42.20 shows the effect on Panel1 in
Figure 42.19 when the form is
enlarged. Again, the width and
height of Panel1 are unaltered.

Figure 42.21 shows that if
Panel1’s Align property is set
to Scale, Panel1 in Figure 42.8
resizes and moves to maintain
the relative position and size as
its parent, Form1, is resized.

Figure 42.22 shows a form
containing two custom-styled
TPanel components, one with
Align set to Bottom (red TPanel
control) and one with Align set to None (chartreuse TPanel control)

Figure 42.23 shows the same form but with the chartreuse TPanel
control’s Align property set to Client. The Client setting causes the control
to resize to fill the client area of its parent, the form.

Fig. 42.15 Alignment
- Bottom

Fig. 42.16 Alignment - Bottom,
form enlarged

Fig. 42.17 Alignment
- Top

Fig. 42.18 Alignment
- Left

Fig. 42.19 Alignment -
Center (US spelling)

Fig. 42.20 Alignment -
Centre, form enlarged

Fig. 42.21 Alignment -
Scale, form enlarged

Increase in
distance from
edge

Increase in
width and
height

Fig. 42.22 Two custom-styled TPanel
controls with align set to None and

Bottom, respectively

© D
r K

 R
 B

on
d 2

02
0

156

As there is another bottom-pinned control already occupying
part of the parent area, the chartreuse-coloured control resizes
to fit the remaining parent area. Figure 42.24 shows the client
area of an example form, Form1 for a Windows 64-bit desktop
application.

Figure 42.25 shows two TPanel controls with their Align
property both set to Bottom.

If the chartreuse-coloured TPanel control’s Align
property is now changed to MostBottom then this
control is pinned to the very bottom of the form’s
client area and the red-coloured TPanel control moves
to above it, as shown in Figure 42.26.

MostTop, MostLeft and MostRight are also available.

Figures 42.27 and 42.28 illustrate the use of FitLeft. The TPanel control
resizes to partially fit the parent area by preserving the aspect ratio. The
control moves to and pins to the left side of the parent.

FitTop, FitBottom and FitRight are also available.

Align property value Contents is similar to Client but differs in resizing to fill the
entire bounds of its parent, to the extent of overlapping it and any other control
present in the client area. Figure 42.29 shows the result of setting the Align
property of the red TPanel control in Figure 42.26 to Contents.

Fig. 42.23 Two custom-styled TPanel
controls with align set to Client and

Bottom, respectively

Align = Client

Align = Bottom

Client area of
Form1 outlined
by a dotted red
rectangle

Fig. 42.24 FireMonkey Windows 64-bit
desktop application

Fig. 42.25 Two custom-styled TPanel
controls, Align set to Bottom for both

Fig. 42.26 Two custom-styled TPanel
controls, red-coloured Align’s property

set to Bottom as before, chartreuse-
coloured Align setting changed to

MostBottom

Fig. 42.27 Custom-styled TPanel
control, Align set to None

Fig. 42.28 Custom-styled TPanel
control, Align set to FitLeft

Fig. 42.29 Two custom-styled
TPanel controls, chartreuse-
coloured Align setting set to

MostBottom, as before, and red-
coloured Align’s property set to

Contents

© D
r K

R B
on

d 2
02

0

157

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Purpose: To learn how to use layouts

FireMonkey layouts are containers for other graphical objects that can be used to build visually attractive and
complex user interfaces. FireMonkey layouts offer the possibility to manipulate a group of controls as a whole
as well as enabling the arrangement, sizing, and scaling of their child controls, Complex user interfaces may be
constructed, relatively easily, by just using properties such as Position, Align, Margins, and Padding with Anchors
and layouts - see Figure 42.30.

The available layouts are located in the Tool Palette, under the Layouts
category - Figure 42.31.

An instance of TLayout is a simple container which is a parent to the other
controls that it contains and which can be manipulated as a group, e.g.
rotated, hidden or made visible by setting the TLayout instance’s Visible
property to True or False.

TLayout is visible at design time but not runtime and does not
automatically set any properties of its children.

Figure 42.32 shows a form at design time containing four TLayout
controls, each containing a custom-styled TPanel control, colour
chartreuse, and each of these, a TText control (TText is similar to TCaption
but is less customisable than TCaption).

First, Layout1 was created containing one TPanel and one TText
control with its Text property set to 'X'. This layout was then copied three
times and the x and y Position properties of each copy and the original,
LayOut1, set to achieve a grid arrangement as shown in Figure 42.32. The
TStyleBook control, StyleBook1, was created when the TPanel control,
Layout1, was custom styled. It is only visible at design time. The align
property of each TLayOut control was set to Scale. The align property of
each TPanel control was set to Client and each TText to Center.

Fig. 42.31 Tool Palette,
Layouts

Fig. 42.32 Creating four TLayout containers each
containing a TPanel and a TText control

Fig. 42.30 User Interface design of
a calculator application

© D
r K

 R
 B

on
d 2

02
0

158

Add a fifth TLayout control, LayOut5, and arrange
for it to be the parent of LayOut1 to LayOut4
inclusive, as shown in the Structure pane in Figure
42.33. Set the align property of LayOut5 to
Client so that it fills the client area of the form,
Form1.

Save project as SimpleTLayoutProject.dprog.

Figure 42.34 shows this project in execution.

Figure 42.35 shows the same project in execution
but after scaling the form.

On scaling the form, the container LayOut5
expands so that it continues to fill the form’s client
area whilstLayOut1 to LayOut4 scale accordingly
because they are contained by LayOut5 and their
alignment is set to Scale.

Margins and padding may be used to make clearer the boundaries between
each panel and between the form and the panels as shown in Figure 42.36.

Padding sets the spacing between
parent and its children. Figure
42.37 shows the Bottom, Left,
Right and Top settings for the
Padding property of Form1
which are responsible for the
padding shown in Figure 42.36.

(Download from www.educational-computing.com/DelphiBook/Code/Chapter41/SimpleTLayout.rar)

Fig. 42.33 Placing the four TLayout containers inside a
fifth TLayout control

Fig. 42.34 SimpleTLayoutProject in execution

Fig. 42.35 SimpleTLayoutProject in
execution with form scaled at runtime

Fig. 42.37 Setting Padding
property of Form1 to 10, Left,
Right, Top and Bottom

Margins.Right

Fig. 42.36
SimpleTLayoutProject
using margins and padding

Padding.Top
Padding.Right

Margins.Bottom

Margins.Left

Margins.Top

© D
r K

R B
on

d 2
02

0

159

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Margins set the spacing between siblings and to the edges of their
parent.

Figure 42.38 shows the Object Inspector settings for the Margins
property of Panel1. Similar settings were applied to the Margins
property of the other panel components.

Figure 42.39 shows the SimpleTLayoutProject in execution with
margins and padding.

When the BorderStyle property of Form1is set to Sizeable
the form is resizable. However, this creates a problem if the
ClipChildren property of a TPanel component is not set
to True. Figure 42.40 shows what happens on scaling down Form1 when the ClipChildren property of Panel1
is False and True for the other panels. Of course, it is possible to stop a form being scaled. To do this set the
BorderStyle property of the form to Single. It might also be a good idea at the same time to set its Position property
to DesktopCenter.

TLayout is one of several layout containers available from the
Layouts tab of the component Palette - Figure 42.41.
In the next section we will use TGridPanelLayout to build a
noughts and crosses board game.

Fig. 42.38 Setting Margins property of
Form1 to 10, Left, Right, Top and Bottom

Fig. 42.39 SimpleTLayoutProject in
execution showing margins and padding

Fig. 42.40 SimpleTLayoutProject in
execution and scaled down to show
clipping for Panel2, Panel3 and Panel4

Fig. 42.41 Layouts tab of component Palette

© D
r K

 R
 B

on
d 2

02
0

160

Purpose: To learn how to develop a multi-device board game

We will build a single form application with FireMonkey that can be deployed to all GUI-supported platforms.

Create a Blank Multi-Device Application - File|New|Multi-Device Application. Save the project as
NoughtsAndCrossesProject and its unit as NoughtsAndCrossesUnit.
1. Place a TLayout container on the form, set its Align property to Client and its Name property to

GameAreaLayout. Rename Form1, OsAndXsForm. Set the form’s
Width to 387 and its Height to 574. Set its Caption to Noughts
and Crosses.

2. Place a TToolBar control on the form and set its Align property to
MostTop, and its Height property to 44.

3. Place a TLayout container on GameAreaLayout, set its Align
property to Bottom, its Height property to 113 and its Name
property to BottomOfFormLayout.

4. Place a TGridPanelLayout on GameAreaLayout, set its Align
property to Client and its Name property to GridPanelLayout.

5. Click the ellipsis in the value field of property ColumnCollection
of GridPanelLayout (Figure 42.43) to bring up the
ColumnCollection editor - Figure 42.44. Click the icon
to add a new column. Adjust the Value field of each column until
each is approximately 33.33% - Figure 42.45. You will need
several attempts to achieve this.

6. Click the ellipsis in the value field of property RowCollection of
GridPanelLayout to bring up the RowCollection editor.
Click the icon to add a new row. Adjust the Value field of
each row until each is approximately 33.33%. You will need several
attempts to achieve this.

7. Select GridPanelLayout and add a TPanel component to the grid.
This panel, Panel1, will be assigned automatically to the first grid cell

8. Select Style: Windows 64-bit, View: Master and right click Panel1
on the form and select Edit Custom Style to bring up the Style

Designer - Figure 42.4. Change the Fill|Color to Chartreuse as
described in the opening section of this chapter, set Align to Client and

Margins all to 4. Click File|Save All.

Fig. 42.44 Editing GridPanelLayout.
ColumnCollection

Fig. 42.45 Editing GridPanelLayout.
ColumnCollection

Fig. 42.43 Object Inspector showing
GridPanelLayout ColumnCollection property

Fig. 42.42 Structure pane for
NoughtsAndCrossesProject

© D
r K

 R
 B

on
d 2

02
0

161

HOW TO PROGRAM EFFECTIVELY IN DELPHI

9. Copy and paste Panel1 eight times. The eight additional panels,
Panel2 to Panel9, will be assigned automatically row by row to
the grid as shown in Figure 42.46. Property StyleLookUp should
be Panel1Style1, the custom style created in bullet 8 which sets
the panels’ fill color to Chartreuse. Click File|Save All.

10. Set GameAreaLayout’s Padding to all 6. OsAndXsForm should
now look as shown in Figure 42.46 and the Structure pane as
shown in Figure 42.42.

11. Add a TText component to Panel1, set Align to Client, set
HitTest to True then copy and paste to the other panels.

12. Change Text1.Tag to 11, Text2.Tag to 12, Text3.Tag to 13,
Text4.Tag to 21, Text5.Tag to 22, Text6.Tag to 23, Text7.
Tag to 31, Text8.Tag to 32, Text9.Tag to 33. Click File|Save

All.
13. Place two TButton controls on the TToolBar control, ToolBar1.

Change Name property of the first to btnAnotherGame and the
second to btnTerminate. Set Align property of first button to
MostLeft and set Align property of second button to MostRight. Set the
Width of each to 150. Set the Text property of the first to Another Game and the second to Terminate. Set
Margins.Bottom, Left, Right to 4 and Margins.Top to 8 for both buttons.

14. Add a TLayout container to ToolBar1. Change its Name to StateOfGameLayout. Set its Align property to
Client. Set Margins.Bottom, Left, Right to 4 and Margins.Top to 8. Click File|Save All.

15. Place a TLabel component on StateOfGameLayout. Change its Name to lblStateOfGame, its Align

property to Center, its Text property to to Undecided, its Width to 151, its TextSettings|HorzAlign to Center.
16. Place four TLabel components on BottomOfFormLayout. Change their Name property to lblColumn,

lblRow, lblNextSymbol, lblNoOfMoves, respectively. Set the Text property of lblColumn to Column,
lblRow to to Row, lblNoOfMovesl to No Of Moves. Clear the Text property field of lblNextSymbol.

17. Set lblNoOfMoves’s Position.X to 25 and Position.Y to 16.
18. Set lblRow’s Position.X to 25 and Position.Y to 47.
19. Set lblColumn’s Position.X to 114 and Position.Y to 47.
20. Set lblNextSymbol’s Position.X to 208 and Position.Y to 16.
21. Add a TLabel component to lblColumn. Change its Name to lblColumnNo. Set Position.X to 64, Position.Y

to 0, Width to 25. Clear the Text property field.
22. Add a TLabel component to lblRow. Change its Name to lblRowNo.

Set Position.X to 39, Position.Y to 0, Width to 25. Clear the Text property field.
23. Add a TLabel component to lblNoOfMoves. Change its Name to lblNumber. Set Position.X to 113,

Position.Y to 0, Width to 19. Set Text property field to 0. Click File|Save All.
24. Now Run (F9) the program. The result is shown in Figure 42.47.

Fix Chapter no marked ?

Fig. 42.46 OsAndXsForm

© D
r K

R B
on

d 2
02

0

162

A two-dimensional array GridArray will used to keep track of the state of the game. Its structure is as follows

TGridArray = Array[1..3,1..3] Of TSquareState;

TSquareState is a user-defined enumerated type defined as
follows

TSquareState = (Empty, SquareCross,
 SquareNought);

Add TSquareState and TGridArray definitions in that order to
the Type area of the Interface section of the unit code.

Variable GridArray is declared as follows

GridArray : TGridArray;

The following nested for loop will be used to initialise GridArray
at the beginning of each game:

For Row := 1 To 3
 Do
 For Column := 1 To 3
 Do GridArray[Row, Column] := Empty;

Two other user-defined enumerated types need to be added to the
Type area of the Interface section.

TSymbol = (Nought, Cross);

TGameState = (GameUndecided, Draw,
 NoughtWin, CrossWin);

Select the OsAndXsForm in the Object Inspector and its Events
tab. Double click in the OnCreate empty field to create an event handler
FormCreate - Figure 42.48.

Switch from the Form view to the Unit view and add code to the skeleton code for FormCreate so that it is as
shown in Table 42.1.
Add the private fields shown in Table 42.2 to the class TOsAndXsForm. Update the global variables section to that
shown in Table 42.43.

Fig. 42.47 GUI for Noughts and Crosses

Fig. 42.48 FormCreate event handler

Procedure TOsAndXsForm.FormCreate(Sender: TObject);
 Var
 Row, Column : Integer;
 Begin
 NoOfMoves := 0;
 Player1Symbol := Cross;
 Player2Symbol := Nought;
 lblNextSymbol.Text := 'X starts';
 If (NoOfGamesPlayed Mod 2) = 0
 Then InitialiseCurrentSymbol(Cross)
 Else InitialiseCurrentSymbol(Nought);
 For Row := 1 To 3
 Do
 For Column := 1 To 3
 Do GridArray[Row, Column] := Empty;
 End;

Table 42.1 OnCreate event handler, FormCreate

P

Private
 Player1Symbol : TSymbol;
 Player2Symbol : TSymbol;
 NoOfMoves : Integer;
 CurrentSymbol : TSymbol;

Table 42.2 Private fields of class
TOsAndXsForm

P

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/FormCreate.txt)

© D
r K

 R
 B

on
d 2

02
0

163

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Add the method header

Procedure InitialiseCurrentSymbol(InitialSymbol : TSymbol);

to the class TOsAndXsForm in the Interface
section and the code shown in Table 42.4 to the
Implementation section.

Select Text1 in the Object Inspector and its Events tab. Double click in the OnClick empty field to create an event
handler Text1Click - Figure 42.49.

Add the code shown in Table 42.5 to the body of this event handler.

Add Text1Click to the OnClick field of each of Text2 to Text9.

Click File|Save All.

Now Run (F9) and test the program.

Figure 42.50 shows the result of clicking on the middle square.

Figure 42.51 shows the result of clicking on the square to the right of the middle square.

Chapter reference to update

Procedure TOsAndXsForm.InitialiseCurrentSymbol(InitualSymbol : TSymbol);
 Begin
 CurrentSymbol := InitialSymbol;
 End;

Table 42.4 Method TOsAndXsForm.InitialiseCurrentSymbol

P

Var
 OsAndXsForm: TOsAndXsForm;
 WhoGoesFirst : TSymbol;
 GridArray : TGridArray;
 GameOutcome : GameStateType = GameUndecided;
 NoOfGamesPlayed : Integer = 0;
 WinningRow : Integer = 0;
 WinningColumn : Integer = 0;
 WinningDiagonal : Integer = 0;

Table 42.3 Global variable declarations and initialisation

P

Fig. 42.49 Text1Click event handler

Fig. 42.50 Executing Noughts and Crosses
and clicking on the middle square

Fig. 42.51 Executing Noughts and Crosses and clicking on
the square to the right of the middle square

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/Variables.txt)

© D
r K

 R
 B

on
d 2

02
0

164

The event handler Text1Click is called when a
mouse click occurs over a square. The component
which is clicked is identified in the parameter
Sender. If it is a TText component and the game
is not yet decided then the RowNo and ColumnNo
of the clicked square is calculated from its Tag
property. The GridArray cell with this RowNo and
ColumnNo is then checked. If it is empty then the
Text property of the TText component associated
with the corresponding square is assigned an 'X' or an
'O' depending on the value of CurrentSymbol. The
value of CurrentSymbol and the Text property of
label lblNextSymbol are then changed as shown in
Table 42.6.

Procedure TOsAndXsForm.Text1Click(Sender: TObject);
 Var
 RowNo, ColumnNo : Integer;
 Begin
 If GameOutcome = GameUndecided
 Then

Begin
If (Sender is TText)

Then
Begin

(Sender As TText).TextSettings.Font.Size := 60;
RowNo := (Sender As TText).Tag Div 10;
ColumnNo := (Sender As TText).Tag Mod 10;
If GridArray[RowNo, ColumnNo] = Empty

Then
Begin

If CurrentSymbol = Cross
Then

Begin
(Sender As TText).Text := 'X';
GridArray[RowNo, ColumnNo] := SquareCross;
CurrentSymbol := Nought;
lblNextSymbol.Text := 'O plays next';

End
Else

Begin
(Sender As TText).Text := 'O';
GridArray[RowNo, ColumnNo] := SquareNought;
CurrentSymbol := Cross;
lblNextSymbol.Text := 'X plays next';

End;
NoOfMoves := NoOfMoves + 1;
lblRowNo.Text := IntToStr(RowNo);
lblColumnNo.Text := IntToStr(ColumnNo);
lblNumber.Text := IntToStr(NoOfMoves);

End;
End;

End;
 End; Table 42.5 Initial code of OnClick event handler, Text1Click

P

If CurrentSymbol = Cross
 Then
 Begin
 (Sender As TText).Text := 'X';
 GridArray[RowNo, ColumnNo] := SquareCross;
 CurrentSymbol := Nought;
 lblNextSymbol.Text := 'O plays next'
 End
 Else
 Begin
 Sender As TText).Text := 'O';
 GridArray[RowNo, ColumnNo] := SquareNought;
 CurrentSymbol := Cross;
 lblNextSymbol.Text := 'X plays next'
 End;

Table 42.6 Section of code from OnClick event
handler, Text1Click, which updates game

Casting from TObject to TText

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/ProcedureTOsAndXsFormText1Click.txt)

© D
r K

R B
on

d 2
02

0

165

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Following the successfully placement on the
grid of an 'X' or an 'O', the state of the game
must be checked by calling the function
TestStateOfBoard and recording the result
returned in variable GameOutcome. as shown in
Table 42.7. Add this code to the end of the event
handler, Text1Click.

The code of function TestStateOfBoard
is shown in Table 42.8. Add Function
TestStateOfBoard : TGameState; to class
TOsAndXsForm in the Interface section.
Add Function TOsAndXsForm.TestStateOfBoard : TGameState; to the Implementation section.

Click File|Save All.

Now Run (F9) and test the program.

Double click button Terminate and add the
following code to the event handler TOsAndXsForm.
btnTerminateClick:

Application.Terminate;

Double click button Another Game and add the
code shown in Table 42.9 to the event handler
TOsAndXsForm.btnAnotherGameClick.

 For j := 1 To 3

 Do

 Begin

 If (GridArray[1, j] = GridArray[2, j])

 And (GridArray[2, j]= GridArray[3, j])

 And (GridArray[1, j] <> Empty)

 Then

 If GridArray[1, j] = SquareCross

 Then

 Begin

 Result := CrossWin;

 WinningColumn := j;

 Exit;

 End

 Else

 Begin

 Result := NoughtWin;

 WinningColumn := j;

 Exit;

 End;

 End;

 If (GridArray[1, 1] = GridArray[2, 2])

 And (GridArray[2, 2] = GridArray[3, 3])

 And (GridArray[1, 1] <> Empty)

 Then

 Begin

 If GridArray[1, 1] = SquareCross

 Then Result := CrossWin

 Else Result := NoughtWin;

 WinningDiagonal := 1;

 Exit;

 End;

 If (GridArray[1, 3] = GridArray[2, 2])

 And (GridArray[2, 2] = GridArray[3, 1])

 And (GridArray[1, 3] <> Empty)

 Then

 Begin

 If GridArray[1, 3] = SquareCross

 Then Result := CrossWin

 Else Result := NoughtWin;

 WinningDiagonal := 2;

 End;

 End;

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/TestStateOfBoard.txt)

Table 42.8 Function TOsAndXsForm.TestStateOfBoard

Function TOsAndXsForm.TestStateOfBoard : TGameState;

 Var

 i, j : Integer;

 Begin

 Result := GameUndecided;

 For i := 1 To 3

 Do

 Begin

 If (GridArray[i, 1] = GridArray[i, 2])

 And (GridArray[i, 2] = GridArray[i, 3])

 And (GridArray[i, 1] <> Empty)

 Then

 If GridArray[i, 1] = SquareCross

 Then

 Begin

 Result := CrossWin;

 WinningRow := i;

 Exit; // Exit function

 End

 Else

 Begin

 Result := NoughtWin;

 WinningRow := i;

 Exit;

 End;

 End;

P

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/GameOutcome.txt)

GameOutcome := TestStateOfBoard;
If (GameOutcome = NoughtWin)
 Then lblStateOfGame.Text := 'Nought wins!';
If (GameOutcome = CrossWin)
 Then lblStateOfGame.Text := 'Cross wins!';
If Not (GameOutcome = GameUndecided)
 Then
 Begin
 {Change colour of winning squares to red}
 End;

Table 42.7 Section of code fromOnClick event
handler, Text1Click, which updates game

P

© D
r K

 R
 B

on
d 2

02
0

166

Figure 42.52 shows that it is possible to indicate a win state not only by text
message, e.g. “Cross wins!” but also by changing the colour of the squares.

The code to do this is shown in Table 42.10. Use this code to replace the
corresponding code from Table 42.7 in the event handler Text1Click.
The custom style Panel1Style2 needs to be created. The easiest way to
do this is to copy Panel1Style1, rename it Panel1Style2 then select
Fill|Color Red before saving. Remember that the custom styles are platform
specific, e.g. Windows 10 Desktop.

Select StyleBook1|Styles|Windows 10 Desktop in the Structure Pane as
shown in Figure 42.53 (it will be Windows

7 Desktop if your O.S. is Windows 7).

In the Object Inspector click on the ellipsis
(...) in the Resource property field as shown
in Figure 42.54. This launches the Style

Designer. Right click Panel1Style1
select Edit|Copy. Select and right click
StyleContainer, select Edit|Paste to create

Fig. 42.52 Winning configuration
indicated in redFig. 42.53 Structure Pane

Procedure TOsAndXsForm.btnAnotherGameClick(Sender: TObject);
 Var
 Row, Column : Integer;
 Begin
 NoOfGamesPlayed := NoOfGamesPlayed + 1;
 NoOfMoves := 0;
 Player1Symbol := Cross;
 Player2Symbol := Nought;
 If (NoOfGamesPlayed Mod 2) = 0
 Then InitialiseCurrentSymbol(Cross)
 Else InitialiseCurrentSymbol(Nought);
 For Row := 1 To 3
 Do

For Column := 1 To 3
Do GridArray[Row, Column] := Empty;

 Text1.Text := ''; Text2.Text := ''; Text3.Text := ''; Text4.Text := '';
 Text5.Text := ''; Text6.Text := ''; Text7.Text := ''; Text8.Text := '';
 Text9.Text := '';
 Panel1.StyleLookup := 'Panel1Style1'; Panel2.StyleLookup := 'Panel1Style1';
 Panel3.StyleLookup := 'Panel1Style1'; Panel4.StyleLookup := 'Panel1Style1';
 Panel5.StyleLookup := 'Panel1Style1'; Panel6.StyleLookup := 'Panel1Style1';
 Panel7.StyleLookup := 'Panel1Style1'; Panel8.StyleLookup := 'Panel1Style1';
 Panel9.StyleLookup := 'Panel1Style1';
 WinningRow := 0;
 WinningColumn := 0;
 WinningDiagonal := 0;
 lblStateOfGame.Text := 'Undecided';
 lblRowNo.Text := '';
 lblColumnNo.Text := '';
 GameOutcome := GameUndecided;
 If (NoOfGamesPlayed Mod 2) = 0
 Then lblNextSymbol.Text := 'X starts'
 Else lblNextSymbol.Text := 'O starts'
 End;

Table 42.9 Event handler TOsAndXsForm.btnAnotherGameClick

P

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/AnotherGameClick.txt)

© D
r K

R B
on

d 2
02

0

167

HOW TO PROGRAM EFFECTIVELY IN DELPHI

a second Panel1Style1 in the Structure

Pane.

Select the copy Panel1Style1 in the
Structure Pane and change its StyleName
property value to Panel1Style2 as
shown in Figure 42.56.

Select Fill|Color|Red for Panel1Style2.

Close the Style Designer, selecting Save to
save the new style Panel1Style2.

Click File|Save All.

Now Run (F9) and test the program.
Finally, we need to take account of a draw,
when all nine squares are occupied but no
winner, by adding the following code to
the end of event handler Text1Click:

Click File|Save All.

Now Run (F9) and test the program.

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/RedSquares.txt)

Fig. 42.54 Resource property

Fig. 42.56 Structure Pane

If (GameOutcome = GameUndecided)

 And (NoOfMoves = 9)

 Then

 Begin

 lblStateOfGame.Text := 'Draw';

 GameOutcome := Draw;

 lblNextSymbol.Text := '';

 End;

If Not (GameOutcome = GameUndecided)
 Then
 Begin
 lblNextSymbol.Text := '';
 If WinningRow <> 0
 Then
 Case WinningRow Of
 1 : Begin
 Panel1.StyleLookup := 'Panel1Style2';
 Panel2.StyleLookup := 'Panel1Style2';
 Panel3.StyleLookup := 'Panel1Style2';
 End;
 2 : Begin
 Panel4.StyleLookup := 'Panel1Style2';
 Panel5.StyleLookup := 'Panel1Style2';
 Panel6.StyleLookup := 'Panel1Style2';
 End;
 3 : Begin
 Panel7.StyleLookup := 'Panel1Style2';
 Panel8.StyleLookup := 'Panel1Style2';
 Panel9.StyleLookup := 'Panel1Style2';
 End;
 End;
 If WinningColumn <> 0
 Then
 Case WinningColumn Of
 1 : Begin
 Panel1.StyleLookup := 'Panel1Style2';
 Panel4.StyleLookup := 'Panel1Style2';
 Panel7.StyleLookup := 'Panel1Style2';
 End;
 2 : Begin
 Panel2.StyleLookup := 'Panel1Style2';
 Panel5.StyleLookup := 'Panel1Style2';
 Panel8.StyleLookup := 'Panel1Style2';
 End;
 3 : Begin
 Panel3.StyleLookup := 'Panel1Style2';
 Panel6.StyleLookup := 'Panel1Style2';
 Panel9.StyleLookup := 'Panel1Style2';
 End;

 End;
 If WinningDiagonal <> 0
 Then
 Case WinningDiagonal Of
 1 : Begin
 Panel1.StyleLookup := 'Panel1Style2';
 Panel5.StyleLookup := 'Panel1Style2';
 Panel9.StyleLookup := 'Panel1Style2';
 End;
 2 : Begin
 Panel3.StyleLookup := 'Panel1Style2';
 Panel5.StyleLookup := 'Panel1Style2';
 Panel7.StyleLookup := 'Panel1Style2';
 End;
 End;
 End;

Table 42.10 More code for Event handler TOsAndXsForm.Text1Click

P

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/NoughtsAndCrosses.rar)

© D
r K

 R
 B

on
d 2

02
0

168

To deploy NoughtsAndCrosses to an Android device successfully, requires that Panel1Style1 and
Panel1Style2 are created for the Android platform, first. Connect an Android device via USB to the
development computer. Select Android 32-bit or Android 64-bit and then select the corresponding target - Figure
42.57.

Select View: Master.

Adding a TPanel component, Panel10, temporarily, is the surest way of
being able to create the required custom styles. Right click the added panel
and select Edit Custom Style. Ensure that the Platform field shows AndroidL

Light, before renaming Panel10Style1, Panel1Style1. Change
Fill|Color to Chartreuse. Copy and paste Panel1Style1 then rename
Panel1Style2. Change its Fill|Color to Red. Finally delete Panel10.
Figure 42.58 shows that the StyleContainer now contains Panel1Style1
and Panel1Style2. Save the newly created styles. Figure 42.59 shows
the change to the Structure Pane which now includes the new style
AndroidL Light. Click File|Save All.

Now Run (F9) and deploy
the program to the connected
Android device.
Figure 42.60 shows
NoughtsAndCrosses
executing on a SamSung S8+
connected to the development
computer via USB.
The required custom styles
must be created for each
type of device to which the
NoughtsAndCrosses program
is to be deployed, e.g. an
iPhone.

Fig. 42.60 Samsung S8+ running
NoughtsAndCrosses

Fig. 42.57 Selecting Android 32-bit for a SamSung S8+target

Fig. 42.59 Structure Pane showing the
newly created AndroidL Light Style

Fig. 42.58 Structure Pane
showing the newly created

styles in the Style Container

© D
r K

 R
 B

on
d 2

02
0

169

HOW TO PROGRAM EFFECTIVELY IN DELPHI

TGridPanelLayout is one of several possible layout containers. TGridLayout is similar to TGridPanelLayout but
unlike a TGridPanelLayout container doesn’t allow a child control placed in a cell of the grid to be manually
resized, aligned or anchored. With TGridLayout, the Height and Width properties of a child control are
automatically set to fit the grid cell.

TFlowLayout arranges the child controls as if they were words in a a paragraph, i.e. they are arranged and displayed
in the layout in the order in which they were added. TFlowLayoutBreak is used to change to the next line.

Programming Task

Modify the Noughts and Crosses application to make it a computer versus human game.
The computer should always go first and its symbol should always be an X.
Use the following rules for the computer’s moves:
Computer’s moves:
Move 1: The computer must place an X in a corner.
Move 2: The computer must place an X in the opposite corner to move 1, if free, Otherwise it should an X
in a corner which is free.
Move 3: If 2 Xs and a space are in a line Then the computer should place an X in the space,
Else If 2 Os and a space are in a line Then the computer should place an X in the space,
Otherwise the computer should place an X in a free corner.
Move 4: The same as Move 3.
Move 5: The computer should place an X in the free space.

1

© D
r K

 R
 B

on
d 2

02
0

170

Purpose: To learn how to develop a multi-device application that uses rotation

The animation that we will create is an analogue clock1 shown in Figure 42.61.

Create a Blank Multi-Device Application - File|New|Multi-Device Application. Save the project as
AnalogueClockWithTimeZones and its unit as AnalogueClockWithTimeZonesUnit.
1. Set Width property of the form, Form1, to 640 and its Height property to 480. Set Form1’s Caption property

to Analogue Clock.
2. Place a TCircle control, Circle1, on the form, Form1. Set its Align

property to Center, its Width and Height properties to 300, its Fill|Color
to White.

3. Place a TLayout container, Layout1, on the TCircle control, set its
Height property to 300, and its Width to 37.5. Set Position.X to 131 and
its Position.Y to 0. Figure 42.62 shows the result of the first three steps.

4. Place a TText control, Text1, on the TLayout control, Layout1, set
its Height property to 37.5, and its Width to 37.5. Set its Position.X to
0, and its Position.Y to 0. Set its Text property to 12. Set TextSettings.

HorzAlign and TextSettings.VertAlign to Center. Set
TextSettings.Font.Size to 24. Set TextSettings.Font.Style to
[fsBold]. Set TextSettings.Font.FontColor to Black - Figure
42.63.

5. Place a TRoundRect control on the the TCircle control,
Layout1. Set its Fill.Color to Black. Set its Width to 14 and
its Height to 70. Set Position.X to 143 and Position.Y to 80.
Rename it rrHour.

1 Based on an idea from Harry Stahl’s book Cross-Platform
Development with Delphi 10.2 & FireMonkey

Fig. 42.63 TText on TLayout container on
TCircle on TForm

Fig. 42.61 AnalogueClockWithTimeZones in execution, time zone set to Sydney Australia

Fig. 42.62 TLayout container on
TCircle on TForm

© D
r K

 R
 B

on
d 2

02
0

171

HOW TO PROGRAM EFFECTIVELY IN DELPHI

6. Place another TRoundRect control on the the
TCircle control, Layout1. Set its Fill.Color
property to Red. Set its Width to 10 and its Height
to 100. Set Position.X to 145 and Position.Y to 50.
Rename it rrMinute.

7. Place another TRoundRect control on the the
TCircle control, Layout1. Set its Fill|Color to
Red. Set its Width to 6 and its Height to 115. Set
Position.X to 147 and Position.Y to 35. Rename it
rrSecond. - Figure 42.64.

8. Place a TLayout container, Layout2, on Form1, set
its Align property to Top, set its Height to 50.

9. Place two TSpeedButton controls on Layout2
and set the Align property of SpeedButton1 to
MostLeft, and SpeedButton2 to Left. Change the Text property of SpeedButton1 to Show Time Zones
and SpeedButton2 to Hide Time Zones. Set TextSettings.WordWrap to True for both. Set the Width
property of the SpeedButton1 to 97 and the SpeedButton2 to 89.

10. Place two TText controls on Layout2. Set the first’s Width to 345 and Height to 33. Set the second’s Align
property to Right and Width to 88. Set Position.X of the first to 184 and Position.Y to 8.

11. Select Layout1 and set its StyleName property to ClockFaceNo.
12. Select Form1 and the Events tab in the Object Inspector. Double click the OnCreate event field to create

the event handler, TForm1.FormCreate. Insert code from Table 42.11 into the event handler. Add variable
declaration Var CurrentTimeZone : String; after {$R *.fmx} in the the Implementation section.

Fig. 42.64 Clockface with hour, minute and second hands

Procedure TForm1.FormCreate(Sender: TObject);
 Var
 i : Integer;
 ClockFaceLayout : TLayout;
 ClockFaceNo : TText;
 Begin
 For i := 1 To 11
 Do
 Begin
 ClockFaceLayout := TLayout(Circle1.FindStyleResource('ClockFaceNo', True));
 If ClockFaceLayOut <> Nil
 Then
 Begin
 ClockFaceLayOut.Parent := Circle1;
 ClockFaceLayOut.RotationAngle := i * 30;
 ClockFaceNo := TText(ClockFaceLayOut.Children[0]);
 If ClockFaceNo <> Nil
 Then
 Begin
 ClockFaceNo.Text := i.ToString;
 ClockFaceNo.RotationAngle := (i * 30) * -1;
 End;
 End;
 End;
 Text2.Text := 'etc/GMT';
 CurrentTimeZone := Text2.Text;
 End;

Table 42.11 Event handler TForm1.FormCreate

P

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/FormCreateBasic.txt)

© D
r K

 R
 B

on
d 2

02
0

172

ClockFaceLayout := TLayout(Circle1.FindStyleResource('ClockFaceNo', True));

After the above statement from event handler FormCreate is executed, ClockFaceLayout either contains Nil or
a reference to a copy of a TLayout object with StyleName property ClockFaceNo, i.e. Layout1.
FindStyleResource returns the resource object linked directly to the control Circle1 or if none exists then it
searches amongst the control’s children for a style resource ClockFaceNo. Of course, it matches resource object
Layout1 because this object has StyleName ClockFaceNo and is a child object of Circle1.
A copy of Layout1 is therefore returned, referenced by variable ClockFaceLayout.
The following code sets the parent of this copy to Circle1 before rotating the copy through a multiple of 30
degrees determined by the current value of i which may be an integer from 1 to 11.

ClockFaceLayOut.Parent := Circle1;
ClockFaceLayOut.RotationAngle := i * 30;

Next, a reference, ClockFaceNo, is obtained, using the following code, to the TText control child of Layout1

ClockFaceNo := TText(ClockFaceLayOut.Children[0]);

The following code changes the Text property of the TText control referenced by ClockFaceNo to the current
value of i (i cycles through 1 to 11) before rotation through a multiple of 30 degrees anticlockwise (times -1) from
the x-axis of the rotated TLayout copy.

ClockFaceNo.Text := i.ToString;
ClockFaceNo.RotationAngle := (i * 30) * -1;

Figure 42.65 shows the TLayout copy rotated clockwise through 90 degrees (i = 3) and its TText control changed
to showing Text property value 3. It is clear from this figure that the TText control must be rotated anticlockwise by
90 degrees if it is to display as shown in Figure 42.66.
Figure 42.66 shows the result when AnalogueClockWithTimeZones is executed.

13. Add a TTimer control, Timer1, to the form. Set Enabled property to True and Interval to 1000 - Figure
42.67. The Structure pane in Figure 42.68 shows the design so far.

12

3

X axis

Fig. 42.65 TLayout original and a copy
which has been rotated through 90
degrees clockwise

Fig. 42.66 AnalogueClockWithTimeZones in execution, time zone
Greenwich Mean Time

Text1

Text2 Text3

SpeedButton1

SpeedButton2

© D
r K

 R
 B

on
d 2

02
0

173

HOW TO PROGRAM EFFECTIVELY IN DELPHI

14. Select Timer1 and the Events tab in the Object Inspector. Double
click the OnTimer event field to create the event handler, TForm1.
Timer1Timer. Insert code from Table 42.12 into the event handler.

15. Add System.DateUtils to the Uses clause of the Interface section.

The next stage is to configure the rotation centre of rectangles rrHour,
rrMinute, rrSecond. The coordinates of the rotation centre take
values in the range 0 through 1. The point with the coordinates (0, 0)
corresponds to the upper-left corner of the control as shown in Figure
42.69.

To rotate the hour, minute and second
hands about the midpoint of the bottom
edge of each, we need to set their
RotationCenter.X property to 0.5 and
their RotationCenter.Y property to 1.

16. Set RotationCenter.X property to
0.5 and RotationCenter.Y property
to 1 for rrHour, rrMinute and
rrSecond.

Click File|Save All.

Now Run (F9) and test the program.

Procedure TForm1.Timer1Timer(Sender: TObject);
 Var
 Hour, TwelveHour, Minute, Second : Word;
 strHour, strMinute, strSecond : String;
 DateTime : TDateTime;
 Begin
 DateTime := Now;
 Hour := HourOf(DateTime);
 TwelveHour := Hour Mod 12;
 Minute := MinuteOf(DateTime);
 Second := SecondOf(DateTime);
 rrHour.RotationAngle := 30 * TwelveHour + Round(Minute/2.17);
 rrMinute.RotationAngle := 6 * Minute;
 rrSecond.RotationAngle := 6 * Second;
 strHour := Hour.ToString;
 strMinute := Minute.ToString;
 strSecond := Second.ToString;
 If (Length(strMinute) < 2)
 Then strMinute := '0' + strMinute;
 If (Length(strSecond) < 2)
 Then strSecond := '0' + strSecond;
 If (Length(strHour) < 2)
 Then strHour := '0' + strHour;
 Text3.Text := strHour + ':' + strMinute + ':' + strSecond;
 End;

Table 42.12 Event handler TForm1.Timer1Timer

P

Fig. 42.67 Timer1 property settings

Fig. 42.68 Structure pane showing design so far

12

Rotation
centres

0, 0 1, 0

0, 1 1, 1
0.5, 1

Fig. 42.69 Coordinates of
some rotation centres for a
rectangular-shaped control

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/TimerVersion1.txt)

© D
r K

 R
 B

on
d 2

02
0

174

Figure 42.70 shows AnalogueClockWithTimeZones in execution with clock hands movement and time
displayed digitally. The event handler Timer1Timer is called every second because its Interval property has been
set to 1000. This property’s units are milliseconds, 1000 milliseconds = 1 second.

Fig. 42.66 AnalogueClockWithTimeZones in execution with clock
hands movement

Questions
Explain the following snippets of code extracted from event handler TForm1.Timer1Timer shown in
Table 42.12.
(a)

 DateTime := Now;
 Hour := HourOf(DateTime);
 TwelveHour := Hour Mod 12;
 Minute := MinuteOf(DateTime);
 Second := SecondOf(DateTime);

(b)
 rrHour.RotationAngle := 30 * TwelveHour + Round(Minute/2.17);
 rrMinute.RotationAngle := 6 * Minute;
 rrSecond.RotationAngle := 6 * Second;

(c)
 strMinute := Minute.ToString;
 strSecond := Second.ToString;
 If (Length(strMinute) < 2)
 Then strMinute := '0' + strMinute;
 If (Length(strSecond) < 2)
 Then strSecond := '0' + strSecond;
 If (Length(strHour) < 2)
 Then strHour := '0' + strHour;
 Text3.Text := strHour + ':' + strMinute + ':' + strSecond;

1

© D
r K

 R
 B

on
d 2

02
0

175

HOW TO PROGRAM EFFECTIVELY IN DELPHI

It is not possible with the current design to distinguish AM from PM.

17. Add a TRectangle control, Rectangle1, to Circle1. Set its Position.X property to 258 and its Position.Y
property to 107. Set its Height to 28 and its Width to 28. Set its XRadius property to 5 and its YRadius
property to 5.
Set Fill.Color to White.

18. Add a TText control, Text4, to Rectangle1. Set its Height to 26 and its Width to 26. Set Align to Center.

19. Add the following code to the end of event handler Timer1Timer:

If IsPm(DateTime)

 Then Text4.Text := 'PM'

 Else Text4.Text := 'AM';

Click File|Save All.

Now Run (F9) and test the program.

Figure 42.67 shows the result.

The clock hands need to show that they are
anchored.
20. Add a TCircle control, Circle2, to

Circle1. Set its Align property to
Center. Set its Width and Height to 26.
Set its Fill.Color property to Black.

Click File|Save All.

Now Run (F9) and test the program.
Figure 42.68 shows the result.

The analogue clock application is only capable
of showing the time for a single time zone. To
change the application to one that supports
selection of other time zone requires that a list
of possible time zones be added.

We need to add a time zone unit TZDB to the
Uses clause of the Interface section and install
TZDB.pas, TZDB.ico and TZDB.res into
the application’s source code folder.

This unit contains the whole pre-compiled
TZ database and all the code required to
interpret it. The TZ database is a collaborative
compilation of information about the world’s
time zones, primarily intended for use with
computer programs and operating systems.

(https://www.iana.org/time-zones).

View TZDB.pas at https://github.com/pavkam/tzdb/blob/master/dist/TZDB.pas.

Download the TZDB library from https://github.com/pavkam/tzdb by clicking on Clone or download|Download ZIP.

Fig. 42.67 AnalogueClockWithTimeZones in execution with clock
hands movement and AM/PM indication

Fig. 42.68 AnalogueClockWithTimeZones in execution with
clock hands anchored

© D
r K

 R
 B

on
d 2

02
0

176

Unzip the download and save to a folder.

21. Copy TZDB.pas, TZDB.ico and TZDB.res from tzdb-master|dist folder to the folder containing
AnalogueClockWithTimeZones.dproj.

22. Add LTimeZone : TBundledTimeZone; to the Var declaration region of the Implementation section.

23. Add the time zone unit TZDB.pas to the Uses clause of the Interface section.

24. Add a TListView control, ListView1, to Form1. Set its CanSwipeDelete to False. Set its Width to 1. Set its
StyleLookUp property to listviewstyle. Set its EditMode to True.

25. Add LTZID : String; LItem : TListViewItem; to Var declaration of event handler FormCreate.

26. Insert the code shown in red in Table 42.13 into event handler FormCreate.

27. Double click SpeedButton1 (Show Time Zones on form) to create event handler SpeedButton1Click.

28. Add the statement ListView1.Width := 250; to this event handler.

29. Double click SpeedButton2 (Hide Time Zones on form) to create event handler SpeedButton1Click.

30. Add the statement ListView1.Width := 0; to this event handler.

Click File|Save All.

Now Run (F9) and test the program.
Figure 42.69 shows the result when Show Time Zones is clicked.

Changing time zone requires an event handler to this when a different time zone is selected from ListView1.

31. Change to the Events tab of ListView1 and double click in the field of OnItemClick to create event handler
ListView1ItemClick.

Procedure TForm1.FormCreate(Sender: TObject);

 Begin

 For i := 1 To 11
 Do
 Begin

 End;
 ListView1.BeginUpdate;
 Try
 For LTZID in TBundledTimeZone.KnownTimeZones(True)
 Do
 Begin
 LItem := ListView1.Items.Add;
 LItem.Text := LTZID;
 End;
 Finally
 ListView1.EndUpdate;
 End;
 ListView1.SetFocus;
 LTimeZone := TBundledTimeZone.GetTimeZone('etc/GMT');
 Text2.Text := 'etc/GMT';
 CurrentTimeZone := Text2.Text;
 End;

Table 42.13 Code in red to insert into event handler TForm1.FormCreate

P

© D
r K

 R
 B

on
d 2

02
0

177

HOW TO PROGRAM EFFECTIVELY IN DELPHI

32. Insert the code shown in red in Table 42.14 into event handler FormCreate.

33. Add SelectedItem : TListViewItem; to Var declaration of Implementation section.

Click File|Save All.

Now Run (F9) and test the
program.
Figure 42.70 shows the result
when Show Time Zones and then
Africa/Asmara are clicked.

To apply the selected time zone to the clock, change

DateTime := Now;

to

DateTime := LTimeZone.ToLocalTime(Now);

in event handler Timer1Timer.

Click File|Save All.

Now Run (F9) and test the
program.
Figure 42.71 shows the result
when Show Time Zones
and then Australia/
Sydney are clicked. The time
shown by the clock changes
to show Sydney time.

34. Finally change the Caption property of Form1 to Analogue Clock.

Click File|Save All.

Fig. 42.69 AnalogueClockWithTimeZones in execution with
Show Time Zones clicked

Procedure TForm1.ListView1ItemClick(Sender: TObject);
 Var
 SelectedItem : TListViewItem;
 Begin
 If SelectedItem <> Nil
 Then SelectedItem.Checked := False;
 If AItem <> Nil
 Then
 Begin
 Text2.Text := AItem.Text;
 CurrentTimeZone := Text2.Text;
 SelectedItem := AItem;
 End
 Else Text2.Text := CurrentTimeZone;
 LTimeZone := TBundledTimeZone.GetTimeZone(Text2.Text);
 End;

Table 42.14 Code to insert into event handler TForm1.ListView1ItemClick

P
© D

r K
 R

 B
on

d 2
02

0

178

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/AnalogueClockWithTimeZones.rar)

Fig. 42.70 AnalogueClockWithTimeZones in execution with
Show Time Zones and then Africa/Asmara clicked

Fig. 42.71 AnalogueClockWithTimeZones in execution fully operational

© D
r K

 R
 B

on
d 2

02
0

179

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Purpose: To learn how to configure a multi-device application for a different target device

The Analogue Clock application was developed on a Windows 10 PC with target operating system set to Windows
64-bit and target device Windows desktop.
Adjustments may be needed to fit the application to a different target device, e.g. a Samsung S8+ mobile phone.
In this section, the target device will be a Samsung S8+ device in developer’s mode connected via USB to the
Windows 10 development PC.
1. First select the operating system and the target device as shown in Figure 42.72 and Figure 42.73.

2. Select Style: Android and View: Android 5"

Phone. The UI design changes to that shown in
Figure 42.73.

3. Set Align property for SpeedButton2 to Most

Left.
4. Set Align property for Text2 to Most Left.

Set its Width to 169.
Click File|Save All.

Now Run (F9) and deploy to
the target device, a Samsung S8+
mobile phone.
Figure 42.74 shows
AnalogueClockWithTimeZones
executing on the target device with
time zone Africa|Casablanca
selected.
Figure 42.75 shows the
application executing on the target device after Show Time Zones clicked
and America/Blanc-Sabon selected.

Fig. 42.72 Toolbar options windows for target
operating system and device

Fig. 42.73 Projects pane for AnalogueClockWithTimeZones

Fig. 42.73 UI design mode
for Android 5" Phone

Fig. 42.74 AnalogueClockWithTimeZones
executing on Samsung S8+

Fig. 42.75 ShowTimeZones clicked

SpeedButton2 Text2

© D
r K

 R
 B

on
d 2

02
0

180

The original settings are restored on switching back to Windows 64-bit, target Windows desktop. This means that
the project maintains one set of settings for the Windows target and a different set for the Android target. Delphi
does this using the resource directive $R placed at the beginning of the implementation section of the unit as
shown below for Windows desktop and Android 5” Phone

Implementation
{$R *.fmx}
{$R *.LgXhdpiPh.fmx ANDROID}

A resource directive is added for each target. Figure 42.76 shows the resource directive list for three different
Android targets, an Apple Mac laptop and Windows desktop., which is placed in the implementation section of the
unit.

Fig. 42.76 Resource directives for different targets

{$R *.fmx}
{$R *.NmXhdpiPh.fmx ANDROID}
{$R *.LgXhdpiPh.fmx ANDROID}
{$R *.SmXhdpiPh.fmx ANDROID}
{$R *.Macintosh.fmx MACOS}

Programming Task

Build and deploy AnalogueClockWithTimeZones to an Android or Apple device.2

© D
r K

 R
 B

on
d 2

02
0

