
310

Aggregation24

Aggregation

Purpose: To understand the special forms of association called
aggregation and composition

What is aggregation?
Aggregation is not a concept unique to object-oriented programming
languages. Any language that supports record-like structures supports
aggregation.

Aggregation is a special form of association with the
meaning of a whole/part hierarchy together with the ability
to navigate from the whole or aggregate to its parts.

For example, a book has pages. We can think of a book as the whole and the
pages as the parts.
A book identified with the ID 36 could be made up of 500 pages with each
page uniquely numbered.
The book’s title might be ‘Intro to OOP by L. P. Partley’.
The pages are bound together and a cover attached to make the book.
In a simplified scenario, we might define a class TBook for all book objects as
shown in Table 24.1.
Methods have been omitted from TBook for convenience.

Similarly, we might define a class TPage for
all the page objects which make up a book as
shown in Table 24.2.

Methods have been omitted from TPage for
convenience.
We use an object constructor method

Create to create an instance of the TBook class and assign
the reference to a variable aBook of type TBook.
We can then create 500 page objects and assign their references
as shown in Table 24.3.

We navigate from the whole to the part as follows

Writeln(aBook.PageRef[2].PageNo);

This Writeln statement accesses aBook, the whole,
then an attribute of aBook, called PageRef. This
attribute is an array which can contain up to 500
references to TPage objects. The indexed reference
PageRef[2] references the second page object, a
part of the whole. This has an attribute PageNo. It is
this which is displayed by Writeln.

Key concept
Aggregation:
Aggregation is a special form
of association between objects
with the meaning of a whole/
part hierarchy together with
the ability to navigate from the
whole or aggregate to its parts.
If and only if there exists a
whole/part relationship between
two objects, e.g. book and page,
can an aggregate relationship
exist between objects of
their corresponding classes,
TBookClass and TPageClass.

TBook = Class
 BookID : 1..2000;
 Title : String;
 PageRef : Array[1..500] Of TPage;
 End;

Table 24.1 TBook class definition

TPage = Class
 PageNo : Integer;
 PageContent : String;
 End;

Table 24.2 TPage class definition

aBook := TBook.Create;
aBook.BookID := 36;
For i := 1 To 500 Do
 Begin
 aBook.PageRef[i] := TPage.Create;
 aBook.PageRef[i].PageNo := i;
 End;

Table 24.3 Creating book and page objects

Information
www.educational-computing.co.uk/DelphiBookCode/DelphiCode.html.

Cop
yri

gh
t D

r K
 R

 B
on

d 2
01

9

HOW TO PROGRAM EFFECTIVELY IN DELPHI﻿

311

The book object may be destroyed, i.e. the memory occupied by
the object released, by using a user-defined destructor, Destroy,
with body code as shown in Table 24.4.
The code first destroys all the page objects before finally
destroying the book object. The user-defined destructor Destroy
releases the memory of the object to which it is applied.
If the book object was a tree in a forest then its leaves are destroyed first followed by the tree itself.
The detail shown in Table 24.4 can be hidden within the user-defined destructor so that calling aBook.Destroy
destroys everything. By analogy, the whole tree is destroyed, leaves, trunk, branches, etc, by the action of
destruction.

Composition
The book example is actually an example of a stronger form of aggregation called composition.

A whole/part relationship or association in which the aggregate object cannot exist without its components. A book is
not a book without its pages otherwise it
would just be a book cover.

Suppose we changed the TBook class so
that its attributes are private and control
access to these attributes via methods
such as TurnPage, ShowPage. Our class
definition might now resemble that shown
in Table 24.5.

All page objects are now hidden behind
access methods. The consequence is that
each page is associated with just one book
object because there is no easy way to copy a page reference so the object it references can be associated at the same time
with another book object.
Composition is characterised by the following

1.	 It is a whole/part relationship or association, i.e. an aggregation

2.	 The aggregate object cannot exist without its component objects

3.	 An object is composed of other objects in a fixed relationship

4.	 The components can only belong to a single composition, i.e. cannot be

shared with another aggregate object at the same time
It is not a defining characteristic of composition to say that the runtime lifetime
of the part is the same as the whole, i.e. destroy the whole and the parts are
destroyed too; however, it is usually the case. An example of when it is not is a
bicycle wheel which could be removed and used with another bicycle. The bicycle
without a wheel is no longer a bicycle.
The main characteristics are that the aggregate object cannot exist without its
component objects and that these are fixed and not shared with another aggregate object at the same time.

Composition: Whole/part association in which the aggregate object cannot exist without its component objects

and the components are fixed and can only belong to a single composition.

For i := 1 To 500
 Do aBook.PageRef[i].Free;
aBook.Free;

Table 24.4 Releasing the memory
occupied by the book and page objects

Questions
Assuming that a book object has been created with 500 pages, each numbered consecutively starting from 1,
what is displayed by Writeln if the following code could be executed?

Writeln(aBook.PageRef[36].PageNo);

1

TBook = Class
 Private
 BookID : 1..2000;
 Title : String;
 PageRef : Array[1..500] Of TPage;
 Public
 Procedure TurnPage;
 Procedure ShowPage;
 ...
 End;

Table 24.5 Applying data encapsulation to TBook

Key concept
Composition:
A whole/part relationship
or association in which the
aggregate object cannot exist
without its components.
A composition hierarchy defines
how an object is composed
of other objects in a fixed
relationship. The components
can only belong to a single
composition

Cop
yri

gh
t D

r K
 R

 B
on

d 2
01

9

312

Aggregation
When the aggregation is weaker than composition we just call it aggregation.
This is a whole/part relationship or association in which none of the part objects
are essential for the whole to exist. This implies that the part is also capable
of an independent existence and the whole/part association is variable - part
objects 'come and go'. For example, a student object may be associated with
both a TutorGroup object (a pastoral group in a school) and a SportsTeam
object but may switch in and out. A TutorGroup object has students and a
SportsTeam object has students so in both cases the relationship is whole/part
but the relationship is not a fixed one and the aggregate/whole object in each case
can exist without its component objects. The component objects can be added
later from a 'pool' of these which are shared out amongst the 'whole' objects. In a
clock example, batteries may be provided from a 'pool of batteries' and batteries
may be added or removed from a clock and even used in another clock without
affecting the existence of the clock which would be the case, for example if the
clock face was removed. The whole/part relationship of battery objects is thus
aggregation, not composition.

Aggregation:
In aggregation the whole/part association is variable.

However, the concept of an aggregation which isn’t composition doesn’t mean
much in practice so it is often just called an association. Therefore, it is not
essential to use aggregation, but it can help us to understand and give added meaning to a model.

A simple test can be applied to discover if the association or relationship between two objects is aggregation. It
applies to both composition and (non-composition) aggregation.

The test is called the "has/has-a" or "is part of" or "contains" test, e.g. a book has a number of pages indicates
that the relationship is aggregation.

Key concept

Aggregation:
It is a whole/part relationship or
association in which an object
is composed of a variable set
of component objects, e.g. a
SportsTeam object composed of
student objects, but the ones
used are not always the same.
Part objects are not essential
for the whole object to exist,
e.g. an empty car boot whole
object. The part is also capable
of an independent existence,
e.g the contents of a car boot
are potential part objects. It
is possible for a part to be
associated with more than one
whole (not necessarily at the
same time), e.g. a student object
can be a part of a sports team
object and a tutor group object.

Cop
yri

gh
t D

r K
 R

 B
on

d 2
01

9

313

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Windows form composition application
Figure 24.1 shows a Windows form application which
adds two integers and displays the result.

The form object FormAdd is of type TFormAdd.

TFormAdd is a class with seven attributes and one
method which performs the addition.

Table 24.7 shows the Delphi unit which contains
the class definition TFormAdd, and Table 24.6 shows
the program which uses the class TFormAdd to create a
form object which is referenced by the reference variable
FormAdd. This form object has a TEdit attribute called
EditFirst.

EditFirst is an object of type TEdit.

TEdit is a class supplied by the Delphi programming
language.

The "has-a" test tells us that the relationship or
association is
aggregation,
and since the
EditFirst
object has a fixed
relationship with
the form object, this
is aggregation of the
composition type
- see class diagram
Figure 24.2. The
same test is passed
by the other objects,
AddBtn and so on.

TFormAdd TForm

TEdit TLabel

TApplication

TButton

1

1 1
1

3 3

Uses

Fig. 24.2 Class diagram for Windows
form application - see Chapter 27

Unit AddUnit;

Interface

Uses

 Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants,

 System.Classes, Vcl.Graphics, Vcl.Controls, Vcl.Forms, Vcl.Dialogs, Vcl.StdCtrls;

Type

 TFormAdd = Class(TForm)

AddBtn: TButton;

EditFirst: TEdit;

LabelEnterFirst: TLabel;

EditSecond: TEdit;

LabelEnterSecond: TLabel;

Result: TEdit;

LabelResult: TLabel;

Procedure AddBtnClick(Sender: TObject);

End;

Var

 FormAdd: TFormAdd;

Implementation

{$R *.dfm}

 Procedure TFormAdd.AddBtnClick(Sender: TObject);

 Begin

 Result.Text := IntToStr(StrToInt(EditFirst.Text) + StrToInt(EditSecond.Text));

 End;

End.

Table 24.7 Delphi unit for a windows form
containing seven objects

Program AddProject;

Uses

 Vcl.Forms, AddUnit in 'AddUnit.pas' {FormAdd};

{$R *.res}

Begin

 Application.Initialize;

 Application.MainFormOnTaskbar := True;

 Application.CreateForm(TFormAdd, FormAdd);

 Application.Run;

End.

Table 24.6 Delphi program which creates form

Fig. 24.1 Windows form object containing other objects

Cop
yri

gh
t D

r K
R B

on
d 2

01
9

314

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Questions
A bicycle consists of a frame, wheels, tyres, a gear train, pedals, saddle, handlebars, brakes and brake levers,
and a gear lever.
What is the relationship between a bicycle object and its parts?

A game of chess uses a chess board and chess pieces. A chess board consists of black and white squares.
What is the relationship between chess board and its black and white squares?

A digital clock is a kind of clock and an analogue clock is also a kind of clock. An analogue clock consists of
a clock face, clock hands, a clock mechanism.
What is the relationship between
(a) Clock and digital watch? (b) Clock and analogue watch?
(c) An analogue watch and clock face, clock hands, clock mechanism?
(d) A digital clock and a battery used to power the clock?

2

3

4

Further information
There are relationships or associations which are not aggregation or inheritance - see Chapter 27. These associations
denote semantic dependency among otherwise unrelated classes, such as between "snakes" and "long grass" – snakes
hide in long grass.
These are just referred to as associations. For example, the type of association called dependency is a "uses"
relationship. This is used to specify the classes "used" by the contents of the class concerned. This is usually taken to
mean that the object class acts upon another class, or needs information contained within another class.
For example, a "snake" can move on the"ground" and therefore can be said to have a dependence relationship with
"ground". However, since a "snake" is not "ground", it is not an inheritance relationship, and a "snake"does not
contain "ground" (i.e. a snake has a ground does not make sense), a "snake’ does not have an aggregation relationship
with "ground".

Cop
yri

gh
t D

r K
R B

on
d 2

01
9

