FireMonkey components 2

Developing with FireMonkey components

B Purpose: To understand how to create custom styles with FireMonkey

Start a new Blank Multi-Device Application.
Save in a separate folder CustomstyleTest as

CustomStyleTestProject.dproj oot

. @ @ ®
and CustomStyleTestUnit.pas.]
Add a TPanel component, Panell, to the form. Adjust size [
® Edit
of form so that it is just greater than Panel1 as shown in Contral
Figure 42.1. Select Windows 64-bit and right click pane11 e - Bind Visgally...
) iy ik Edit...
on the form and select Edit Custom Style to bring | Y
Position
up the Style Designer - Figure 42.4. As TPanel inherits /' Flip Children
from TRectangle, the Style Designer shows a TRectangle Tab Order...
. Creation Order...
control. This control has a Fill property. Change the Hide Non-Visual Components CirleH
Fill|Color to Chartreuse and change the Name field to Revert to [nherited
Add to Repository...
PanelStyleChartreuse. The Platform field ipsthe Stylé Vi
View as Text
Designer - Figure 42.4 - shows Windows 10 Desktop so this v TJext FMX
custom style will apply to Windows 10 Desktop applications [Edt Custom Style.. |
Edit Default Style..,
ly. Cl le Desi icki in th . .
only. Close the Style Designer by elicking the cross in the Fig. 42.1 CustomStyleTestUnit form,
tab and click Yes when prompted to apply Panell right clicked
DX CustomStyleTestProject - Delphi 10.3 - CustomStyleTestUnit
Chaﬂges- File Edit Search View Refacter Project Run Component Tools Tabs Help
If this is the first time that changes are DS 8 DrevEH B i YOI B EiE=G
applied, Delphl adds a TStleBOOk Structure f X Welcome Page Em!
component, TStyleBookl, to the form as By 4 ¢
N , Form1
shown in Figure 42.2. The TPanel control’s H Form
[] Panen
colour is now Chartreuse. # StyleBook]
. A Styles
The available styles are revealed by expanding &
Styles in the Structure window, - Figure 42.3. Object Inspector .

StyleBook1 TstyleBook

Structure
X 4 & Properties Events pe
] Form1 74 FileName
[] Panel LiveBindings Des LiveBindings Designer
StyleBook1 Mame StyleBook1
& Styles StyleMName
o} 0 - Default Styles (TStyleCollection)
¥} 1 - Windows 10 Desktop w Tag 0
. . UseStyleManage [| False
Fig. 42.3 Structure window Fig. 42.2 Panell now filled with colour Chartreuse and

StyleBook1 added
152

HOW TO PROGRAM EFFECTIVELY IN DELPHI

BX CustomStyleTestProject - Delphi 10

ustomStyleTestUnit

Default Layout

File Edit Search View Refactor Project Run Component Tools Tabs Help
DEadl §:OKrvE BE i v G v I1 B G2[(= & 88 Windowss4bit L
Structure ! X Welcome Page | CustomStyleTestUnit Style Designer v
£ 4 O BE - 1000 + Platform: Windows 10 Desktop ~ G B
& StyleContainer
1 Panel1Stylel
Object Inspector X
<Unnamed> TRectangle
Properties Events pel
Align Center ~
Anchors 1
ClipChildren [] False
ClipParent [] False
Corners [TopLeft, TopRight, BottormnLeft, BottomRigh
CornerType Round
Cursor crDefault
DragMode dmManual
Enabled True
EnableDragHigh True 4 W
Fill (Brush) L 3
Bitmap (TBrushBitmap)
Color [] #FFFOFOFO
Gradient (Gradient)
Kind Solid ﬁ =
Resocurce (TBrushResource) ‘;“
Height 120 0 g
feight - 45 -~ N Fig. 42.4 Style Designer
[T Y n 4 - [e
Bind Visually... Quick Edit... :‘,;
N
A_A' »
e Style Designer
4 AN

Figure 42.5 shows that the StyleName property-field has been set to Panelistylel for

PanelStyleChartreuse.

Figure 42.6 shows that a new custom style'named panel1Stylel has been created and applied to the

StyleLookUp field of panel1, The default style is panelstyle, the intial style for Panell.

Object Inspector \\.JJ

PanelStyleChartreuse TRectangle

Properties Events
Locked |:| False
Margins (TBounds)
Mame PanelStyleChartreuse
Opacity 1
Padding (TBounds)
PopupMenu
Position (TPosition)
RotationAngle 0
RotationCenter (TPosition)
Scale (TPosition)
Sides [Top,Left, Bottom,Right]
Size (TControlSize)
Stroke {Brush)
StyleMame Panel15tylel

Fig. 42.5 Object Inspector reveals new
style as StyleName Panel1Stylel

153

Object Inspector

Panell TPanel

Properties Events pe
PopupMenu -~
Position (TPosition)

RotaticnAngle 0

RotationCenter (TPosition)

Scale (TPosition)

ShowHint [] False

Size (TControlSize)

StyleLookup Panel1Style1

StyleMame calloutpanelstyle

TabOrder

TabStop Panel15tylel

Tag el
Bind Visually... Quick panelstyle

pushpanel

Fig. 42.6 Object Inspector reveals new style

added to StyleLookUp

TForm control,

Form1
B Purpose: To learn how to use anchors TPanel Contml\@ :

Anchors are used to set the way a control resizes and moves around when the

form changes. Each control has O to 4 anchors. oo
o o

The position of the control relative to one or more edge(s) of parent may be set Fig. 42.8 Master view of Form1

as follows: containing custom-styled TPanel
« Top control, colour Chartreuse
. Boton e
" Lef I S
FESGNENN Tl i
* Right ST
* Any combination of the above SRS
The default is Top, Left. = -
op € R " “\[iq. 42.9 No anchors, form
Typically, the Object i ek i enlarged
P ’ . Panell TPanel / 8
Inspector is used to set the Properties Events - -/0'/
values of these anchors at Action ~ SR i et
design time. Figure 42.7 Align Nene :H R
Anchers [aklLeft.akTop,akRight.akBottom] : R A e b
shows the Anchors property et /] True ST
in the Object Inspector. The akTop [v] True e B e o
akRight V] True D AR N Ry
anchors have field names sibotom /| TE),) SHEIETET IS
akLeft, akTop, akRight and ClipChildren [] False” _ o c
akBottom. ClipParent [T False Fig. 42.10 Anchor - Left,
ControlType . Stfled form enlarged
The custom-styled TPanel Fig. 42.7 [The Arfchors property exposed in the | . L L
control, ane11, shown in Object Inspector IR SR
Figure 42.8 is contained within
........................ O
its parent, a TForm control, Foxfm1. e e e D
Figures 42.9,42.10, 42.115;42.12 show the effect of the different anchors when
O m]

applied singly to the TPanel'control of Figure 42.8 and the form, Form1, is Fig. 42.11 Anchor - Top,

enlarged at design time. Note that the width and height of Pane11 remain form enlarged

unaltered. Figure 42.13 shows the result of enlarging the form in Figure 42.8 when o
both Left and Top anchors of the TPanel control are selected. Note that the widthand -~~~ 0000 0
height of Panc11 again remain unaltered. ;;;;;;;;;;;H; St
R SRR RN EE .
R Soas S PSS
s | e———— D o
Rt) S Sl Fig. 42.12 Anchor - Right,
FESCENE S Sl = | form enlarged
_ . - Fig. 42.14 Anchor - Left,
Flg. 42.13 Ai’lChOT"-Left, TOp, nght, BOﬂ'OWlfOT’m
Top, form enlarged enlarged

Figure 42.14 shows the result of enlarging the form in Figure 42.8 at design time when all four anchors are
selected. The width and height of Pane11 change.

154

HOW TO PROGRAM EFFECTIVELY IN DELPHI

B Durpose: To learn how to use alignmente s

The anchors property enables a control to maintain a specified relationship with an edge 00000000

of a parent as illustrated in the last section. If instead, we want the control to lie along an “

edge of its parent then we use the Align property of the control. The default is None.

Figure 42.15 shows the result of using the Object Inspector to set the Align property to Fig. 42.15 Alignment
Bottom, of the custom-styled TPanel control, Panel1, shown in Figure 42.8. The height - Bottom

value of Panell in Figure 42.8 is preserved but its width and position

are changed so that it lies along the bottom edge. Now, when the form is

enlarged, the height of Panel11 is preserved but its width increases so that it

continues to lie along the bottom edge - Figure
42.16. The respective effect for the other edges is
achieved with alignment settings Top, Left and
Right. Figure 42.17 shows that when Align is

Top, Panell’s position changes and its width

increases so that it lies along the top edge, but the '] B Ng "‘)
Fig. 42.17 Alignmend Pig. 42.16 Alignment - Bottom,

height of Panell remains the same. - Top
form enlarged

Figure 42.18 shows that when Align is Left, its

position changes and its height increases so that it lies along the left'edge, but the =

width of Pane11 remains the same. V= W\ N A
. - O S

igure 42.19 shows the effect on pPanell in Figure >H L e
42.8'when Aligr.l for panel1 is set to Center (US ' 9600 Fig. 42.18illignm[ent
spelling). The width and height of Panel1 are SRRSO - Left
unaltered Fig. 42.19 Alignment - P e SN S
Figure 42.20 shows the effect on Panel? in Center (US spelling) RN N A REAby e i
Figure 42,19 when the form i TR
enlarged. Again, the width and width and B EE R SR Y
height of Panel1 are unaltered. height H R =

Figure 42.21 shows that if / """ 'Ijjjjjjjjjj [e e s B B S S

. . Increase in
panell’s Align property is set

distance from

to Scale, Panel1 in Figure 42.8 dge / 3 o
resizes and moves to maintain AR G = Fio. 4 205‘”, ;
...................... ig. 42. ignment -

therelativepositionandsizeas A S AP L S Centre formenlarged
4

its parent, Form1, is resized. oo

Figure 42.22 shows a form Lo Beo e n e D 3 SN
containing two custom-styled _ o o : :.: .
Fig. 42.21 Alignment - ...

TPanel components, one with Scale, form enlarged 00l

Align set to Bottom (red TPanel

control) and one with Align set to None (chartreuse TPanel control)

Figure 42.23 shows the same form but with the chartreuse TPanel
Fig. 42.22 Two custom-styled TPanel
controls with align set to None and
Bottom, respectively

control’s Align property set to Client. The Client setting causes the control

to resize to fill the client area of its parent, the form.

155

Align = Client

As there is another bottom-pinned control already occupying
part of the parent area, the chartreuse-coloured control resizes
to fit the remaining parent area. Figure 42.24 shows the client
area of an example form, Forml for a Windows 64-bit desktop

application. Align = Bottom

Figure 42.25 shows two TPanel controls with their Align

property both set to Bottom. — —

Fig. 42.23 Two custom-styled TPanel

controls with align set to Client and
Bottom, respectively

Client area of

Form1 outlined |

by a dotted red

Fig. 42.25 Two custom-styled TPanel rectangle \Q(L i

controls, Align set to Bottom for both i
If the chartreuse-coloured TPanel control’s Align ./

property is now changed to MostBottom then this E

control is pinned to the very bottom of the form’s Fig. 42.24 FireMonkey Windows 64-bit
client area and the red-coloured TPanel control moves desktop application

to above it, as shown in Figure 42.26.
MostTop, MostLeft and MostRight are also available:
Figures 42.27 and 42.28 illustrate the use of FitLeft. The TPanel control

resizes to partially fit the parent area by preserving the aspect ratio. The

control moves to and pins to the lefeside of the parent.

FitTop, FitBottom and FitRight are also available.

Fig. 42.26 Two custom-styled TPanel
controls, red-coloured Align’s property
set to Bottom as before, chartreuse-
coloured Align setting changed to
MostBottom

Fig. 42.27 Custom-styled TPanel Fig. 42.28 Custom-styled TPanel
control, Align set to None control, Align set to FitLeft

Align property value Contents is similar to Client but differs in resizing to fill the

entire bounds of its parent, to the extent of overlapping it and any other control

O mi
present in the client area. Figure 42.29 shows the result of setting the Align Fig. 42.29 Two custom-styled
property of the red TPanel control in Figure 42.26 to Contents. TPanel controls, chartreuse-

coloured Align setting set to
MostBottom, as before, and red-
coloured Align’s property set to
Contents

156

HOW TO PROGRAM EFFECTIVELY IN DELPHI

B Purpose: To learn how to use layouts

FireMonkey layouts are containers for other graphical objects that can be used to build visually attractive and

complex user interfaces. FireMonkey layouts offer the possibility to manipulate a group of controls as a whole

as well as enabling the arrangement, sizing, and scaling of their child controls, Complex user interfaces may be

constructed, relatively easily, by just using properties such as Position, Align, Margins, and Padding with Anchors

and layouts - see Figure 42.30.

Ancther Game

Uﬂdecldad ‘

Terminate

- NoOfMoves: - - 0

Bl Gk

Fig. 42.30 User Interface design of

a calculator application

Palette

nlv 0
. Layouts
= TlLayout

= TScaledlayout

= TGridLayout

% TaridPanellayout
2 TFlowLayoutBreak
= TFlowLayout

[¥ TScrollBox

[TvertScrollBox

[THorzScrollBox

[TFramedScrollBox

[§ TFramedVertScrollBox
[TPresentedScrollBox

Fig. 42.31 Tool Palette,

Layouts

The available layouts are located in the Tool Palette, under the Layouts
category - Figure 42.31.

An instance of TLayout is a simple container which is a parent to the other
controls that it contains and which can be manipulated as a group, e.g.
rotated, hidden or made visible by setting the TLayout instance’s Visible
property to True or False.

TLayout is visible at design time but not %and does not

automatically set any properties of its.child

Figure 42.32 shows a form at de% containing four TLayout
m

controls, each containing a custo ed TPanel control, colour
chartreuse, and each of these ext control (TText is similar to TCaption
but is less customisable 1: aption).

d containing one TPanel and one TText

First, Layout1l ‘

control with itsoperty set to 'X'. This layout was then copied three
times an@ﬂ'\d y Position properties of each copy and the original,
LayOutl, setto achieve a grid arrangement as shown in Figure 42.32. The
TS control, StyleBook1, was created when the TPanel control,

youtl, was custom styled. It is only visible at design time. The align

Qroperty of each TLayOut control was set to scale. The align property of

each TPanel control was set to Client and each TText to Center.

Structure 0w Welcome Page
B 4 &

] Form1
~ = Layout]
~[] Panel l
ke Text
v < Layout?
“[] Panel2
ke Text2
o = Layout3
~[] Panel3
G Text3
~ = Layoutd
[] Panel4
i Textd
~ # StyleBookl

x

Fig. 42.32 Creating four TLayout containers each
containing a TPanel and a TText control

157

(Download from www.educational-computing.com/DelphiBook/Code/Chapter41/SimpleTLayout.rar)

Add a fifth TLayout control, LayOut5, and arrange
for it to be the parent of LayOut1 to Layout4
inclusive, as shown in the Structure pane in Figure
42.33. Set the align property of Layout5 to
Client so that it fills the client area of the form,

Forml.
Save project as SimpleTLayoutProject.dprog.
Figure 42.34 shows this project in execution.

Figure 42.35 shows the same project in execution

but after scaling the form.

On scaling the form, the container Layout5

expands so that it continues to fill the form’s client
area whilstLayout1 to Layout4 scale accordingly
because they are contained by Layout5 and their

alignment is set to Scale.

Margins and padding may be used to make clearer the boundaries

each panel and between the form and the panels as shown in Figu

Structure
2 4 &

Form1
~ = Layout5
~ = Layoutl
~[] Panell
ik Textl
~ == Layout2
~[] Panel2
Gk Text2
~ = Layout3
“[] Panel3
Gk Text3
== Layoutd
~[] Paneld
Gk Textd
~ ¥ StyleBookl
o oy Styles

o o Welcome Page _

a

Fig. 42.33 Placing the four TLayout containers inside a

Fig. 42.36
SimpleTLayoutProject
using margins and padding

Form1 TForm1

Properties Events
ClientWidth 385

=V

Fig. 42.34 SimpleTLayoutProject in execution

@ Form1 — O s

Cursor

Padding sets the spacing between . &

parent and its children. Figure . :::::?;
42.37 shows the Bottom, Left, :::l';f: ':'e':
Right and Top settings for the et
Padding property of Forml > UseBindings De
which are responsible for the o x
padding shown in Figure 42.36. II::M

Top

crDefault
(Brush)
(TFormFactor)

MNormal
[False
N

0
LiveBindings Designer
Form1
(TBounds)
10

10

10

10

158

Fig. 42.35 SimpleTLayoutProject in
execution with form scaled at runtime

Fig. 42.37 Setting Padding
property of Form1 to 10, Left,
Right, Top and Bottom

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Margins set the spacing between siblings and to the edges of their

Object Inspector T
parent. Panell TPanel
Figure 42.38 shows the Object Inspector settings for the Margins ~ Properties Events r
Hint -~
property of Panel1l. Similar settings were applied to the Margins HitTest True
property of the other panel components. LiveBindings LiveBindings
LiveBindings Des LiveBindings Designer
Figure 42.39 shows the SimpleTLayoutProject in execution with Locked L] False
. . Margins (TBounds)
margins and padding. Bottom 10
Left 10
@ Form1 - O H Right 10
Top 10

Marme Panell

Fig. 42.38 Setting Margins property of
Form1 to 10, Left, Right, Top and Bottom

@ F. ‘119] X
Fig. 42.39 SimpleTLayoutProject in &h

execution showing margins and padding

When the BorderStyle property of Formlis set to Sizeable Oig - 42.40 SimpleTLayoutProject in
£l execution and scaled down to show

clipping for Panel2, Panel3 and Panel4

the form is resizable. However, this creates a proble

ClipChildren property of a TPanel component i
to True. Figure 42.40 shows what happens on scaling down Form1 when the ClipChildren property of panell

is False and True for the other panels. Of coutse, it is possible to stop a form being scaled. To do this set the
BorderStyle property of the form to Si & It might also be a good idea at the same time to set its Position property

to DesktopCenter.

TLayout is one of several la@ntainers available from the

Layouts tab of the compone ette - Figure 42.41. g0

In the next section we will use TGridPanelLayout to build a Materials

noughts and crosses board game. Layouts
= Tlayout

=2 TScaledLayout

= TGridLayout

% TaridPanellayout
& TFlowlLayoutBreak
= TFlowLayout

[} TScrollBox

[TvertScrollBox

[THorz5crollBox

[TFramedScrollBox
[TFramedVertScrollBox
[H TPresentedScrollBox

Fig. 42.41 Layouts tab of component Palette

159

B Purpose: To learn how to develop a multi-device board game

We will build a single form application with FireMonkey that can be deployed to all GUI-supported platforms.

Create a Blank Multi-Device Application - File|New|Multi-Device Application. Save the project as

NoughtsAndCrossesProject and its unit as NoughtsAndCrossesUnit.

1.

Place a TLayout container on the form, set its Align property to Client and its Name property to
GameAreaLayout. Rename Forml, OsAndXsForm. Set the form’s
Width to 387 and its Height to 574. Set its Caption to Noughts Structure

and Crosses. *__v' X 4 <

Place a TToolBar control on the form and set its Align property to 7] OsAndXsForm

MostTop, and its Height property to 44. = Gamehrealayout

Place a TLayout container on GameAreaLayout, set its Align = BottomOfFormLayout

:Ji_ GridPanellayout
- & ColumnCollection
» &% ControlCollection

property to Bottom, its Height property to 113 and its Name
property to BottomOfFormLayout.

Place a TGridPanelLayout on GameAreaLayout, set its Align] Panel
property to Client and its Name property to GridPanelLayout.] Panel2
Click the ellipsis in the value field of property ColumnCollection 1 [] Panel3
of GridPanelLayout (Figure 42.43) to bring up the [] Panel4
ColumnCollection editor - Figure 42.44. Click the icon 9 [Panels
to add a new column. Adjust the Value field of each column until g E:::::
each is approximately 33.33% - Figure 42.45. You'will need [] Panel2
several attempts to achieve this. [] Paneld
g&, RowCollection
Object Inspector i # StyleBookl

GridPanellayout TGridPanellayout

mm ToolBarl

Properties Events /O
Align Client ~ Fig. 42.42 Structure pane for
Anchors [akLeft@kTop,akRight, akBottom] NoughtSATldCTOSSL’SPT’OjECf
ClipChildren [] False
ClipParent D False
e (G dPanlLayout.I ColumnCollection) S @ Editing GridPanelLa... X
Fig. 42.43 ObjeetInspector showing 5 X | & ¥

GridPanelLayout ColumnCollection property

Member Size Type Value
Click the ellipsis in the value field of property RowCollection of

Colurmnd Percent 50...
GridPanelLayout to bring up the RowCollection editor. Columnl Percent 50...

Click theicon %3 to add a new row. Adjust the Value field of
each row until each is approximately 33.33%. You will need several Fig. 42.44 Editing GridPanelLayout.

attempts to achieve this. ColumnCollection
Select GridpanelLayout and add a TPanel component to the grid. @D Editing GridPanellay... X
This panel, Pane11, will be assigned automatically to the first grid cell o X | P

Select Style: Windows 64-bit, View: Master and right click Panel1
Member Size Type Value

Columnd Percent 33.33%
Columnl Percent 33.34%

on the form and select Edit Custom Style to bring up the Style
Designer - Figure 42.4. Change the Fill|Color to Chartreuse as

described in the opening section of this chapter, set Align to Client and Column2 Percent 33.33%
Margins all to 4. Click File|Save All. Fig. 42.45 Editing GridPanelLayout.
ColumnCollection

160

HOW TO PROGRAM EFFECTIVELY IN DELPHI Fix Chapter no marked ?

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Copy and paste Panel1 eight times. The eight additional panels,

Panel2 to Panel9, will be assigned automatically row by row to

the grid as shown in Figure 42.46. Property StyleLookUp should
be Panellstylel, the custom style created in bullet 8 which sets
the panels’ fill color to Chartreuse. Click File|Save All.

Set GameAreaLayout’s Padding to all 6. 0sAndxsForm should
now look as shown in Figure 42.46 and the Structure pane as
shown in Figure 42.42.

Add a TText component to Panell, set Align to Client, set
HitTest to True then copy and paste to the other panels.

Change Text1.Tag to 11, Text2.Tag to 12, Text3.Tag to 13,
Textd.Tag to 21, Text5.Tag to 22, Text6.Tag to 23, Text7.
Tag to 31, Text8.Tag to 32, Text9.Tag to 33. Click File|Save
All

Place two TButton controls on the TToolBar control, ToolBar1.

Change Name property of the first to btnAnotherGame and the :
second to btnTerminate. Set Align property of first button to (
MostLeft and set Align property of second button to MostRight.@he
Width of each to 150. Set the Text property of the first to An@
Margins.Bottom, Left, Right to 4 and Margins.Top to 8 @)
Add a TLayout container to ToolBar1. Change it StateOfGameLayout. Set its Align property to
Client. Set Margins.Bottom, Left, Right to 4 QMar s.Top to 8. Click File|Save All.

Fig. 42.46 OsAndXsForm

Game and the second to Terminate. Set

buttons.

. Change its Name to 1blStateOfGanme, its Align
property to Center, its Text property to to Undecided, its Width to 151, its TextSettings|HorzAlign to Center.
Place four TLabel components on BottomOfFormLayout. Change their Name property to 1b1Column,

Place a TLabel component on StateOfGame

1blRow, 1blNextSymbol, 1blNeOfMoves, respectively. Set the Text property of 1b1Column to Column,
1blRow to to Row, lblNoOfM to No Of Moves. Clear the Text property field of 1b1NextSymbol.
Set 1b1NoOfMoves’s P@X to 25 and Position.Y to 16.

Set 1b1Row’s Position. and Position.Y to 47.

Set 1blColumn’s Position.X to 114 and Position.Y to 47.

Set 1b1NextSymbol’s Position.X to 208 and Position.Y to 16.

Add a TLabel component to 1b1Column. Change its Name to 1b1ColumnNo. Set Position.X to 64, Position.Y
to 0, Width to 25. Clear the Text property field.

Add a TLabel component to 1b1Row. Change its Name to 1b1RowNo.

Set Position.X to 39, Position.Y to 0, Width to 25. Clear the Text property field.

Add a TLabel component to 1b1NoOfMoves. Change its Name to 1b1Number. Set Position.X to 113,

Position.Y to 0, Width to 19. Set Text property field to 0. Click File|Save All.
Now Run (F9) the program. The result is shown in Figure 42.47.

161

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/FormCreate.txt)

A two-dimensional array Gridarray will used to keep track of the state of the game. Its structure is as follows

TGridArray = Array[l..3,1..3]
TSquareState is a user-defined enumerated type defined as
follows
TSquareState = (Empty, SquareCross,

SquareNought) ;
Add Tsquarestate and TGridArray definitions in that order to

the Type area of the Interface section of the unit code.
Variable Gridarray is declared as follows

GridArray TGridArray;

The following nested for loop will be used to initialise Gridarray

at the beginning of each game:

For Row := 1 To 3
Do
For Column := 1 To 3

Do GridArray[Row, Column] := Empty;
Two other user-defined enumerated types need to be added to the

Type area of the Interface section.

Of TSquareState;

@ Noughts and Crosses — O X

Ancther Game Undecided ‘

Terminate

No Of Moves 0
TSymbol = (Nought, Cross):; OQ Row Column
TGameState = (GameUndecided, Draw, .
. _ Fig. 42.47 GUI for Noughts and Crosses
NoughtWin, CrossWin
Select the OsAndxsForm in the Object Inspec its Events :

Object Inspector 7 X
tab. Double click in the OnCreate empty field to create an event handler g pnaxsForm T0sAncX<Form &
FormCreate - Figure 42.48. Sl Events 0

Action hdl
Procedure TOsAndXsForm.F e (Sender: TObject); > gﬁ:;?on
ivate
Veue OnClose
Row, Column : I r; OnCloseQuer
Begin OnCreate FormCreate
ReloraHenes 8= O Fig. 42.48 FormCreate event handler
PlayerlSymbol := Cross;
Player2Symbol := Nought; Private
1blNextSymbol.Text := 'X starts'; PlaverlSymbol TSvmbol ; P
If (NoOfGamesPlayed Mod 2) = 0 PlaierZSimbol Tsimbolt
Then InitialiseCurrentSymbol (Cross) oo e S ;
Else InitialiseCurrentSymbol (Nought) ; CurrentSvmbol TS ;bol'
For Row := 1 To 3 v v !
Do
For Column := 1 To 3 Table 42.2 Private fields of class
Do GridArray[Row, Column] := Empty; TOsAndXsForm
End;

Table 42.1 OnCreate event handler, FormCreate

Switch from the Form view to the Unit view and add code to
shown in Table 42.1.

the skeleton code for FormCreate so that it is as

Add the private fields shown in Tible 42.2 to the class TOsandxsForm. Update the global variables section to that

shown in Table 42.43.

162

Chapter reference to update

HOW TO PROGRAM EFFECTIVELY IN DELPHI

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/Variables.txt)
Add the method header

Procedure InitialiseCurrentSymbol (InitialSymbol : TSymbol) ;

to the class TOsAndXsForm in the Interface

Var
section and the code shown in Tuble 42.4 to the OsAndXsForm: TOsAndXsForm; .
WhoGoesFirst : TSymbol;

GridArray : TGridArray;
GameOutcome : GameStateType =
NoOfGamesPlayed : Integer = 0;
WinningRow : Integer = 0;

Implementation section.

GameUndecided;

WinningColumn : Integer = 0;

WinningDiagonal : Integer 0;

Table 42.3 Global variable declarations and initialisation

Procedure TOsAndXsForm.InitialiseCurrentSymbol (InitualSymbol : TSymbol) ; .
Begin

CurrentSymbol := InitialSymbol;
End;

Table 42.4 Method TOsAndXsForm.Ini

v,
PurrentSymbol

Select Text1 in the Object Inspector and its Events tab. Double click in the OnClick empty field to create an event

handler Text1click - Figure 42.49. Ny
e > Object I
Add the code shown in Table 42.5 to the body of this event han%) nspector
Textl TText

Add Text1click to the OnClick field of each of Text2 '@ .
@ Properties Events

Click File|Save All. > LiveBindings LiveBindings
OnClick Text1Click

Now Run (F9) and test the program. g‘
Figure 42.50 shows the result of clicking on the middle square. Fig. 42.49 TextIClick event handler

Figure 42.51 shows the result of clicking onthe square to the right of the middle square.

@ MNoughts and Crosses - [m} X

@ Noughts and Crosses

Another Game Undecided

No Of Moves 1 O plays next No Of Moves 2 X plays next
Row 2 Column 2 Row 2 Column 3

Fig. 42.50 Executing Noughts and Crosses Fig. 42.51 Executing Noughts and Crosses and clicking on
and clicking on the middle square the square to the right of the middle square

163

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/Procedure TOsAndXsFormText1Click.txt)

Procedure TOsAndXsForm.TextlClick (Sender: TObject) ;
Var P
RowNo, ColumnNo Integer;
Begin
If GameOutcome = GameUndecided
Then
Begin
If (Sender is TText)
Then
Begin
(Sender As TText) .TextSettings.Font.Size := 60;
RowNo := (Sender As TText).Tag Div 10;
ColumnNo := (Sender As TText) .Tag Mod 10;
If GridArray[RowNo, ColumnNo] = Empty
Then
Begin
If CurrentSymbol = Cross
Then
Begin Q
(Sender As TText) .Text := 'X';
GridArray[RowNo, ColumnNo] := S e ss;
CurrentSymbol := Nought;
1bINextSymbol.Text := 'O plays =
End
Else
Begin
(Sender As TText) .T c= '0';
GridArray [RowNozmC No] := SquareNought;
CurrentSymbol ss;
'X plays next';
ntToStr (RowNo) ;
1blColumn = IntToStr (ColumnNo) ;
1bINumber.T := IntToStr (NoOfMoves) ;
End; {
End;
End;
Fnd @2.5 Initial code of OnClick event handler, Text1Click

The event handler Text1Click is called when a
mouse click occurs over a square. The component
which is clicked is identified in the parameter
Sender. If it is a TText component and the game

is not yet decided then the RowNo and ColumnNo

of the clicked square is calculated from its Tag
property. The Gridarray cell with this RowNo and
ColumnNo is then checked. If it is empty then the
Text property of the TText component associated
with the corresponding square is assigned an X' or an
'O’ depending on the value of Currentsymbol. The
value of CurrentSymbol and the Text property of

label 1b1NextSymbol are then changed as shown in
Table 42.6.

If CurrentSymbol = Cross
Then
Begin — Casting from TODbject to TText

(Sender As TText) .Text := 'X';

GridArray[RowNo, ColumnNo] := SquareCross;
CurrentSymbol := Nought;
1blNextSymbol.Text := 'O plays next'
End
Else
Begin

Sender As TText) .Text := '0O';

GridArray[RowNo, ColumnNo] := SquareNought;
CurrentSymbol := Cross;
1blNextSymbol.Text := 'X plays next'

End;

Table 42.6 Section of code from OnClick event
handler, Text1Click, which updates game

164

HOWTO P OGRAM EFFECTIVELY IN DELPHI

Download from www.educational-computing.com/DelphiBook/Code/Chapter42/TestStateOfBoard. txt)
(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/GameOutcome.txt)

Following the successfully placement on the
grid of an 'X' or an 'O’ the state of the game If
must be checked by calling the function
TestStateOfBoard and recording the result tE

returned in variable GameOutcome. as shown in

GameOutcome
(GameOutcome
Then 1blStateOfGame.Text
(GameOutcome
Then 1lblStateOfGame.Text
(GameOutcome

If Not
Table 42.7. Add this code to the end of the event Then
handler, Text1click. Begin

The code of function TestStateOfBoard
is shown in Table 42.8. Add Function
TestStateOfBoard TGameState; to class
TOsAndXsForm in the Interface section.

Add Function TOsAndXsForm.TestStateOfBoard
Click File|Save All.
Now Run (F9) and test the program.

Function TOsAndXsForm.TestStateOfBoard : TGameState;
Var
i, 3 Integer;
Begin P
Result := GameUndecided;
For i := 1 To 3
Do
Begin <
If (GridArray([i, 1] = GridArray[i, 2])
And (GridArrayl[i, 2] = GridArra
And (GridArray([i, 1] <> Empty)
Then
If GridArrayl[i, 1] = Square€ros

Then
Begin
Result :

Begin
Result :

NoughtWin;

WinningRow :
Exit;

End;

i;

End;

TestStateOfBoard;
NoughtWin)

P

'Nought wins!';

CrossWin)

'Cross wins!';

GameUndecided)

{Change colour of winning squares to red}
End;

Table

42.7 Section of code fromOnClick event

handler, Text1Click, which updates game

TGameState; to the Implementation section.

> Fo

If

Table 42.8 Function TOsAndXsForm.TestStateOfBoard

Double click button Terminate and add the
following code to the event handler TOsAndxsForm.

btnTerminateClick:
Application.Terminate;

Double click button Another Game and add the
code shown in Tuble 42.9 to the event handler
TOsAndXsForm.btnAnotherGameClick.

If

End;

r j :=1To 3
Do
Begln
= GridArrayl[2, j1)
dArray j1= GridArrayl[3,
(GrldArray[l j1 <> Empty)
Then
If GridArray([l, j] = SquareCross
Then
Begin
Result := CrossWin;
WinningColumn := j;
Exit;
End
Else
Begin
Result := NoughtWin;
WinningColumn := j;
Exit;
End;
End;
(GridArray[l, 1] = GridArrayl[2, 21)
And (GridArrayl[2, 2] = GridArrayl[3, 31)
And (GridArray[l, 1] <> Empty)
Then
Begin
If GridArray([l, 1] = SquareCross
Then Result := CrossWin
Else Result := NoughtWin;
WinningDiagonal := 1;
Exit;
End;
(GridArray[l, 3] = GridArrayl[2, 21)
And (GridArrayl[2, 2] = GridArrayl[3, 11)
And (GridArray[l, 3] <> Empty)
Then
Begin
If GridArray([l, 3] = SquareCross
Then Result := CrossWin
Else Result := NoughtWin;
WinningDiagonal := 2;
End;

jl)

165

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/AnotherGameClick. txt)

Procedure TOsAndXsForm.btnAnotherGameClick (Sender: TObject) ;
Var P
Row, Column Integer;
Begin
NoOfGamesPlayed := NoOfGamesPlayed + 1;
NoOfMoves := 0;
PlayerlSymbol := Cross;
Player2Symbol := Nought;
If (NoOfGamesPlayed Mod 2) = 0
Then InitialiseCurrentSymbol (Cross)
Else InitialiseCurrentSymbol (Nought) ;
For Row := 1 To 3
Do
For Column := 1 To 3
Do GridArray[Row, Column] := Empty;
Textl.Text := ''; Text2.Text := ''; Text3.Text := ''; Text4.Text := '';
Text5.Text := ''; Text6.Text := ''; Text7.Text := ''; Text8.Text := '';
Text9.Text := '';
Panell.StyleLookup := 'PanellStylel'; Panel2.StylelLook
Panel3.StyleLookup := 'PanellStylel'; Panel4.StyleLoo
Panel5.StyleLookup := 'PanellStylel'; Panel6.StylelfookRup 'PanellStylel’;
Panel7.StyleLookup := 'PanellStylel'; Panel8.Sty, o%' = 'PanellStylel';
Panel9.StyleLookup := 'PanellStylel';
WinningRow := 0;
WinningColumn := 0;
WinningDiagonal := 0;
lblStateOfGame.Text := 'Undecided'; Q
1blRowNo.Text := ''; O
1blColumnNo.Text := '';
GameOutcome := GameUndecided;
If (NoOfGamesPlayed Mod 2) =
Then 1blNextSymbol.Text := starts'
Else 1lblNextSymbol.Textf:= 'O"starts'
End;

Table 42.9 EoentNandler TOsAndXsForm.btnAnotherGameClick

Figure 42.52 shows that it is possible-to indicate a win state not only by text

message, e.g. “Cross wins!” but also by changing the colour of the squares.
£c, €.g y ging q

The code to do this is showrnrin Table 42.10. Use this code to replace the
corresponding code from Tuble 42.7 in the event handler Text1Click.
The custom style Panel1style2 needs to be created. The easiest way to
do this is to copy PanellStylel, rename it PanellStyle2 then select
Fill|Color Red before saving. Remember that the custom styles are platform

specific, e.g. Windows 10 Desktop.
Select StyleBook1|Styles|Windows 10 Desktop in the Structure Pane as

shown in Figure 42.53 (it will be Windows

7 Desktop if your O.S. is Windows 7). T ——

7] OsAndXsForm
= Gamehrealayout

In the Object Inspector click on the ellipsis
(...) in the Resource property field as shown

¥ StyleBook1
in Figure 42.54. This launches the Style & Styles
¥} 0 - Default
Designer. Right click Panellstylel ¥ 1 - Windows 10 Desktop
== ToolBarl

select Edit|Copy. Select and right click
Fig. 42.53 Structure Pane

166

StyleContainer, select Edit|Paste to create

@ Noughts and Crosses

Cross wins!

Ancther Game

Fig. 42.52 Winning configuration
indicated in red

HOW TO PROGRAM EFFECTIVELY IN DELPHI
(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/RedSquares.txt)

asecond PanellStylel in the Structure

Pane.

Select the copy Panellstylel in the
Structure Pane and change its StyleName
property value to PanellStyle?2 as
shown in Figure 42.56.

Structure rox
3 44

& StyleContainer
[Panel15tylel

Object Inspector X
StyleBook1.5tyles[1] TstyleCollectionltern

Events pe
Windows 10 Desktop

(Resource)

Properties
Platform

Resource

Fig. 42.54 Resource property

¥ 4 &

& StyleContainer
I Panell5tylel

1 Panell5tyle2
Fig. 42.56 Structure Pane

Select Fill|Color|Red for Panellstyle2.

Close the Style Designer, selecting Save 1o
save the new style Panell1styles

Click File|Save All.
Now Run (F9) and test the program.

Finally, we need to take account of a draw,
when all nine squares are occupied but no
winner, by adding the following code to
the end of event handler Text1Click:

If (GameOutcome = GameUndecided)
And (NoOfMoves = 9)
Then
Begin
1lblStateOfGame.Text := 'Draw';
GameOutcome := Draw;
1blNextSymbol.Text := '';
End;
Click File|Save All.

Now Run (F9) and test the program.

If Not (GameOutcome = GameUndecided)
Then
Begin

1blNextSymbol.Text := '';
If WinningRow <> 0
Then
Case WinningRow Of
1 : Begin
Panell.StyleLookup
Panel2.StyleLookup
Panel3.StyleLookup
End;
2 : Begin
Paneld.
Panel5.
Panel6.
End;
3 : Begin
Panel?7
Panel8

StyleLookup
StyleLookup
StyleLookup

End;
End;
If WinningColu
Then

Case Widn olumn Of
1 s in

Panell.StyleLookup

Paneld.

Panel’.
End;

2 : Begin
Panel2.
Panel5.
Panel8.

End;

3 : Begin
Panel3.
Panel6.
Panel9.

End;

<>

StyleLookup
StyleLookup

StyleLookup
StyleLookup
StyleLookup

StyleLookup
StyleLookup
StyleLookup

End;
If WinningDiagonal <> 0
Then
Case WinningDiagonal Of
1 : Begin
Panell.
Panel5.StyleLookup
Panel9.
End;
2 : Begin
Panel3.
Panel5.
Panel?
End;

StyleLookup
StyleLookup
StyleLookup
StyleLookup

.StyleLookup

End;
End;

.Styl % :
o SIE Lookup :
Panel9. L up

'PanellStyle2';
'PanellStyle2’;
'PanellStyle2’;

'PanellStyle2’';
'PanellStyle2';
'PanellStyle2';

'PanellStyle2';
'PanellStyle2';
'PanellStyle2';

'PanellStyle2';
'PanellStyle2';
'PanellStyle2';

'PanellStyle2';
'PanellStyle2';
'PanellStyle2';

'PanellStyle2';
'PanellStyle2';
'PanellStyle2';

'PanellStyle2';
'PanellStyle2';
'PanellStyle2';

'PanellStyle2';
'PanellStyle2';
'PanellStyle2';

Table 42.10 More code for Event handler TOsAndXsForm.Text1Click

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/NoughtsAndCrosses.rar)

167

To deploy NoughtsandCrosses to an Android device successfully, requires that Panel1stylel and
Panellstyle?2 are created for the Android platform, first. Connect an Android device via USB to the
development computer. Select Android 32-bit or Android 64-bit and then select the corresponding target - Figure

42.57.
Structure
I§' Android 32-bit e 5M-G955F e _
®' Androi i | 5 o
Fig. 42.57 Selecting Android 32-bit for a SamSung S8+target Ta= StyleContainer
1 Panel15tylel
Select View: Master. [PaneliStyle2
Adding a TPanel component, Panel10, temporarily, is the surest way of Fig. 42.58 Structure Pane
being able to create the required custom styles. Right click the added panel showing the newly created
and select Edit Custom Style. Ensure that the Platform field shows AndroidL styles in the Style Container
Light, before renaming Panel10Stylel, PanellStylel. Change
Fill|Color to Chartreuse. Copy and paste PanellStylel then rename
panellstyle2. Change its Fill|Color to Red. Finally delete Pane110. D &<
Figure 42.58 shows that the StyleContainer now contains PanellStylel)i G_mndKSFDrm
’ == Gamefrealayout

and Panellstyle2. Save the newly created styles. Figure 42.59 shows 4 BottomOfFormLayout
the change to the Structure Pane which now includes the new style e IbIColumn

AndroidL Light. Click File|Save All. atc bINextSymbol

Now Run (F9) and deploy ake [BIMNoOfMaoves

abe |bIMumber
the program to the connected

abc IbIRow
Android device. :E_ GridPanellayout
Figure 42.60 shows ¥ StyleBookl
NoughtsAndCrosses &y Styles

¥y 0 - Default

executing on a SamSung S8+ .
#} 1 - Windows 10 Desktop

¥} 2 - AndroidL Light

= ToolBarl

connected to the development
computer via USB.

Th ired cust 1
€ required custorm Stye} Fig. 42.59 Structure Pane showing the

newly created AndroidL Light Style

must be created for each

type of device to which the
NoughtsAndCrosses program
is to be deployed, e.g. an
iPhone.

No Of Moves 5
Row 3 Column 3

(5]

Fig. 42.60 Samsung S8+ running
NoughtsAndCrosses

168

HOW TO PROGRAM EFFECTIVELY IN DELPHI

TGridPanelLayout is one of several possible layout containers. TGridLayout is similar to TGridPanelLayout but
unlike a TGridPanelLayout container doesn’t allow a child control placed in a cell of the grid to be manually
resized, aligned or anchored. With TGridLayout, the Height and Width properties of a child control are

automatically set to fit the grid cell.

TFlowLayout arranges the child controls as if they were words in a a paragraph, i.e. they are arranged and displayed

in the layout in the order in which they were added. TFlowLayoutBreak is used to change to the next line.

Programming Task

Modify the Noughts and Crosses application to make it a computer versus human game.
The computer should always go first and its symbol should always be an X.
Use the following rules for the computer’s moves:
Computer’s moves:
Move 1: The computer must place an X in a corner.
Move 2: The computer must place an X in the opposite corner to move 1, if free, Otherwise it should an X
in a corner which is free.
Move 3: If 2 Xs and a space are in a line Then the computershould place an X in the space,
Else If 2 Os and a space are in a line Then the computershould place an X in the space,
Otherwise the computer should place an X in a free corner.
Move 4: The same as Move 3.

Move 5: The computer should place an X'in the-free space.

169

B Purpose: To learn how to develop a multi-device application that uses rotation

The animation that we will create is an analogue clock' shown in Figure 42.61.

@ Analogue Clock

Show Time Hide Time
Zones Zones

Australia/Sydney

— O X

02:24:45

Fig. 42.61 AnalogueClockWithTimeZones in executionNiime zone set to Sydney Australia

Create a Blank Multi-Device Application - File|New|Multi=Device Application. Save the project as

AnalogueClockWithTimeZones and its unit assAnaloglieClockWithTimeZonesUnit.

1.

Set Width property of the form, Form1, to 640 and its Height property to 480. Set Form1’s Caption property

to Analogue Clock.

Place a TCircle control, Circlel, on the form, Forml. Set its Align
property to Center, its Width.and Height properties to 300, its Fill| Color
to White.

Place a TLayout contaifier, Layout1, on the TCircle control, set its
Height property to 300, and its Width to 37.5. Set Position.X to 131 and
its Position.Y to 0. Figure 42.62 shows the result of the first three steps.
Place a TText control, Text1, on the TLayout control, Layout1, set

its Height property to 37.5, and its Width to 37.5. Set its Position.X to
0, and its Position.Y to 0. Set its Text property to 12. Set TextSettings.
HorzAlign and TextSettings.VertAlign to Center. Set B
TextSettings.Font.Size to 24. Set TextSettings.Font.Style to

[fsBold]. Set TextSettings.Font.FontColor to Black - Figure

42.63.

Place a TRoundRect control on the the TCircle control,

Layout1. Set its Fill.Color to Black. Set its Width to 14 and

its Height to 70. Set Position.X to 143 and Position.Y to 80.

Rename it rrHour.

1

Development with Delphi 10.2 & FireMonkey

Fig. 42.62 TLayout container on
TCircle on TForm

Based on an idea from Harry Stahl’s book Cross-Platform F ig .42.63 TText on TLayout container on

170

TCircle on TForm

HOW TO PROGRAM EFFECTIVELY IN DELPHI

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/FormCreateBasic. txt)

6- Place another TRoundRect COIltI'OI on the the ..

TCircle control, Layout1. Set its Fill.Color R

property to Red. Set its Width to 10 and its Height

to 100. Set Position.X to 145 and Position.Y to 50. o

Rename it rrMinute. seuzanoiiseias

7. Place another TRoundRect control on thethe

TCircle control, Layout1. Set its Fill|Color to
Red. Set its Width to 6 and its Height to 115. Set e

Position. X to 147 and Position.Y to 35. Rename it = -

rrSecond. - Figure 42.64.

8. Place a TLayout container, Layout2, on Forml, set e T e

its Align property to Top, set its Height to 50.

9. Place two TSpeedButton controls on Layout? Fig. 42.64 Clockface with hour, minute and second hands
and set the Align property of SpeedButtonl to
MostLeft, and speedButton?2 to Left. Change the Text property of SpeedButtonl to Show Time Zones
and SpeedButton?2 to Hide Time Zones. Set TextSettings.WordWiap'to True for both. Set the Width
property of the SpeedButtonl to 97 and the SpeedButton2 to 89.

10. Place two TText controls on Layout2. Set the firsts Width to 345 and Height to 33. Set the second’s Align
property to Right and Width to 88. Set Position.X of the first't6,184 and Position.Y to 8.

11. Select Layout1 and set its StyleName property to ClockFadeNo.

12. Select Form1 and the Events tab in the Object Inspéctor-"Double click the OnCreate event field to create
the event handler, TForm1 .FormCreate. Insertecode from Tuble 42.11 into the event handler. Add variable

declaration Var CurrentTimeZone : String; after {$R *.fmx} in the the Implementation section.

Procedure TForml.FormCreate (Se%@bj ect);
Var Q‘\' >

i : Integer;
ClockFacelLayout ;
ClockFaceNo : T t;
Begin
For 1 := 1 To
Do
Begin
ClockFacelayout := TLayout (Circlel.FindStyleResource ('ClockFaceNo', True))
If ClockFacelLayOut <> Nil
Then
Begin
ClockFacelLayOut.Parent := Circlel;
ClockFacelLayOut.RotationAngle := i * 30;

ClockFaceNo := TText (ClockFaceLayOut.Children([O0]) ;
If ClockFaceNo <> Nil
Then
Begin
ClockFaceNo.Text := i.ToString;
ClockFaceNo.RotationAngle := (i * 30) * -1;
End;
End; Table 42.11 Event handler TForm1.FormCreate
End;
Text2.Text := 'etc/GMT';
CurrentTimeZone := Text2.Text;
End;

171

ClockFacelLayout := TLayout (Circlel.FindStyleResource('ClockFaceNo', True));
After the above statement from event handler FormCreate is executed, ClockFaceLayout either contains Nil or
a reference to a copy of a TLayout object with StyleName property ClockFaceNo, i.e. Layoutl.
FindStyleResource returns the resource object linked directly to the control Circlel or if none exists then it
searches amongst the control’s children for a style resource ClockFaceNo. Of course, it matches resource object
Layoutl because this object has StyleName ClockFaceNo and is a child object of Circlel.

A copy of Layout1 is therefore returned, referenced by variable ClockFaceLayout.
The following code sets the parent of this copy to Circlel before rotating the copy through a multiple of 30
degrees determined by the current value of i which may be an integer from 1 to 11.

ClockFaceLayOut.Parent := Circlel;
ClockFaceLayOut.RotationAngle := i * 30;

Next, a reference, ClockFaceNo, is obtained, using the following code, to the TText control child of Layoutl

ClockFaceNo := TText (ClockFaceLayOut.Children[O0]);
The following code changes the Text property of the TText control referenced by ClockFaceNo to the current
value of i (i cycles through 1 to 11) before rotation through a multiple of 30 degtees anticlockwise (times -1) from
the x-axis of the rotated TLayout copy.

ClockFaceNo.Text := i1i.ToString;

ClockFaceNo.RotationAngle := (i,.%,30) * -1;
Figure 42.65 shows the TLayout copy rotated clockwise through*90-degrees (i = 3) and its TText control changed
to showing Text property value 3. It is clear from this figure that the TText control must be rotated anticlockwise by
90 degrees if it is to display as shown in Figure 42.664

Figure 42.66 shows the result when AnalogueClockWithTimeZones is executed.

SpeedButton2
@ Form1 ¢ Textz \ TCXtS - O x FPm————
] A V1200
ShZDn-tres " go:es G, : :
: : X axis
TCX(I 1 1 1
SpeedButtonl ! ' !
[[S A —— n.

Fig. 42.65 TLayout original and a copy
which has been rotated through 90
degrees clockwise

Fig. 42.66 AnalogueClockWithTimeZones in execution, time zone
Greenwich Mean Time

13. Add a TTimer control, Timer1, to the form. Set Enabled property to True and Interval to 1000 - Figure
42.67. The Structure pane in Figure 42.68 shows the design so far.

172

HOW TO PROGRAM EFFECTIVELY IN DELPHI

(Download from www.educational-computing.com/DelphiBook/Code/Chapter42/TimerVersion1.txt)

Procedure TForml.TimerlTimer (Sender: TObject) ;

Var

Word;
String;

Hour, TwelveHour, Minute, Second

strHour, strMinute, strSecond

DateTime TDateTime;
Begin

Now;

HourOf (DateTime) ;
TwelveHour Hour Mod 12;
MinuteOf (DateTime) ;
SecondOf (DateTime) ;

rrHour.RotationAngle

DateTime

Hour

Minute

Second

30 * TwelveHour + Round (Minute/2.17);
6 * Minute;

6 * Second;

rrMinute.RotationAngle

rrSecond.RotationAngle

strHour := Hour.ToString;
strMinute := Minute.ToString;
strSecond := Second.ToString;

If (Length(strMinute) < 2)
Then strMinute '0' + strMinute;
If (Length(strSecond) < 2)

Q
Qb

Then strSecond := '0O' + strSecond;
If (Length(strHour) < 2)
Then strHour := '0O' + strHour;
Text3.Text := strHour + ':' + strMinute +W':' + strSecond;
End;
OO

Table 42.12 Event hangtex CForm1. Timer1Timer

14. Select Timer1 and the Events tab in the Object Inspéctor. Double :
Object Inspector r X
click the OnTimer event field to create the event handlery TForm1 . T
imer1 TTimer
TimerlTimer. Insert code from Table 42.1 % into-the event handler. p operties Euents 0
15. Add System.DateUtils to the Uses clause of the Interface section. Enabled True
Interval 1000
The next stage is to configure the rotation centre of rectangles rriour, LiveBindings| LiveBindings Designer
rrMinute, rrSecond. The coordinates of the rotation centre take Name Timer]
StyleMame
values in the range 0 through 1. The point with the coordinates (0, 0) Tag 0

corresponds to the upper-left'corner of the control as shown in Figure Fig. 42.67 Timer1 property settings

42.69. - 0,0e----01,0
To rotate the hour, minute and second Sl E 12 E
hands about the midpoint of the bottom L5 &% E E
edge of each, we need to set their [C] Form1 E E
RotationCenter.X property to 0.5 and (O Circlel Rotation E E
their RotationCenter.Y property to 1. < Layout1 centres E E
—J rrHour ! !
16. Set RotationCenter. X property to 5 rMinute E E
0.5 and RotationCenter.Y property (3 rrSecond : :
to 1 for rrHour, rrMinute and < Layout? ! '
rrSecond. Ed| SpeedButtoni 0,1 iq_i’_]i 1,1
Click File|Save AlL i) SpeedButton?

Now Run (F9) and test the program.

Fig. 42.69 Coordinates of

skt Textd '
o) some rotation centres for a
© Timerl rectangular-shaped control

Fig. 42.68 Structure pane showing design so far

173

Figure 42.70 shows AnalogueClockiithTimeZones in execution with clock hands movement and time
displayed digitally. The event handler Timer1Timer is called every second because its Interval property has been

set to 1000. This property’s units are milliseconds, 1000 milliseconds = 1 second.

@ Form1 - O *

Show Time Hide Time

Zones Zones etc/GMT 12:04:18

Fig. 42.66 AnalogueClockWithTime#gves in execution with clock

hands movement

Questions

Explain the following snippets of code extracted from event handler TForml . Timer1Timer shown in
Table 42.12.

(a)
DateTime := Now;
Hour := HourOf (DateTime) ;
TwelveHour := Hour Mod 12;
Minute := MinuteOf (DateTime) ;
Second := SecondOf (DateTime) ;

(b)
rrHour.RotationAngle := 30 * TwelveHour + Round (Minute/2.17);
rrMinute.RotationAngle := 6 * Minute;
rrSecond.RotationAngle := 6 * Second;

(c)
strMinute := Minute.ToString;
strSecond := Second.ToString;
If (Length(strMinute) < 2)
Then strMinute := 'O' + strMinute;
If (Length(strSecond) < 2)
Then strSecond := '0' + strSecond;
If (Length(strHour) < 2)
Then strHour := '0O' + strHour;
Text3.Text := strHour + ':' + strMinute + ':' + strSecond;

174

HOW TO PROGRAM EFFECTIVELY IN DELPHI

It is not possible with the current design to distinguish AM from PM.

17. Add a TRectangle control, Rectanglel, to Circlel. Set its Position.X property to 258 and its Position.Y
property to 107. Set its Height to 28 and its Width to 28. Set its XRadius property to 5 and its YRadius
property to 5.

Set Fill.Color to White.

18. Add a TText control, Text4, to Rectanglel. Set its Height to 26 and its Width to 26. Set Align to Center.

19. Add the following code to the end of event handler TimerIiTimer:

If IsPm(DateTime) @ Form - 0 %
Then Textd.Text := 'PM! Sh;:nweisme Hi;;:;:ne T s

Else Textd.Text :

Click File|Save Al

'AM';

Now Run (F9) and test the program.
Figure 42.67 shows the result.
The clock hands need to show that they are

anchored.

20. Add a TCircle control, Circle?2, to
Circlel. Setits Align property to
Center. Set its Width and Height to 26.
Set its Fill.Color property to Black.

Click File|Save All.
Now Run (F9) and test the program. FigNd2.67 AnalogueClockWithTimeZones in execution with clock

Figure 42.68 shows the result. hands movement and AM/PM indication

The analogue clock application is only capable® | @ rom - o X
of showing the time for a single time zonexTo | srewTime tideTime ete/GMT 09:52:39
change the application to one that supports

selection of other time zone réquires that a list

of possible time zones be added:

We need to add a time zone unit TZDB to the
Uses clause of the Interface section and install
TZDB.pas, TZDB.ico and TZDB. res into

the application’s source code folder.

This unit contains the whole pre-compiled

TZ database and all the code required to

interpret it. The TZ database is a collaborative

compilation of information about the world’s

time zones, primarily intended for use with Fig. 42.68 AnalogueClockWithTimeZones in execution with
computer programs and operating systems. clock hands anchored

(https://www.iana.org/time-zones).

View TZDB.pas at https://github.com/pavkam/tzdb/blob/master/dist/TZDB.pas.
Download the TZDB library from https://github.com/pavkam/tzdb by clicking on Clone or download|Download ZIP.
175

Unzip the download and save to a folder.

21. Copy TZDB.pas, TZDB.ico and TzDB. res from tzdb-master|dist folder to the folder containing

AnalogueClockWithTimeZones.dproj.

22. Add L.TimeZone

TBundledTimeZone; to the Var declaration region of the Implementation section.
23.
24.

Add the time zone unit TZDB.pas to the Uses clause of the Interface section.

Add a TListView control, ListViewl, to Forml. Set its CanSwipeDelete to False. Set its Width to 1. Set its

StyleLookUp property to listviewstyle. Set its EditMode to True.

25.Add LTZID : String; LItem : TListViewItem; to Var declaration of event handler FormCreate.
26. Insert the code shown in red in Tuzble 42.13 into event handler FormCreate.
27. Double click SpeedButtonl (Show Time Zones on form) to create event handler SpeedButtonlicClick.
Procedure TForml.FormCreate (Sender: TObject) ; Q
Begin (L P
For i := 1 To 11 Q
Do
Begin E
End;
ListViewl.BeginUpdate;
Try < ,
For LTZID in TBundledTi .RnownTimeZones (True)
Do
Begin
LItem := Lis ewl.Items.Add;
LItem.Te Z1D;
End;
Finally
ListVi &dUpdate;
End;
ListView tFocus;
" ne := TBundledTimeZone.GetTimeZone ('etc/GMT') ;
T ext := 'etc/GMT';
CurrentTimeZone := Text2.Text;
End;

Table 42.13 Code in red to insert into event handler TForm1.FormCreate

28. Add the statement ListViewl.Width

250; to this event handler.

29. Double click speedButton2 (Hide Time Zones on form) to create event handler SpeedButtoniclick.

30. Add the statement ListViewl.Width 0; to this event handler.

Click File|Save All.

Now Run (F9) and test the program.
Figure 42.69 shows the result when show Time Zones is clicked.

Changing time zone requires an event handler to this when a different time zone is selected from Listviewl.

31. Change to the Events tab of ListViewl and double click in the field of OnltemClick to create event handler
ListViewlItemClick.

176

HOW TO PROGRAM EFFECTIVELY IN DELPHI

32. Insert the code shown in red in Tuble 42.14 into event handler FormCreate.

33. Add selectedItem : TListViewItem; to Var declaration of Implementation section.

& Form1
Click File|Save All. ShowTime Hide Time et
Zones Zones
Now Run (F9) and test the A
[Africa/Abidjan
program.
Figure 42.70 shows the result [AfricafAccra
when Show Time Zones and then
[} Africa/Addis_Ababa
Africa/Asmara are clicked.
[] AfricafAlgiers
[Africa/Asmara
[T Africa/Bamako
D Africa/Bangui
[} Africa/Banjul
[] Africa/Bissau
] Africa/Blantyre \,

Fig. 42.69 AnalogueG@lockWithTimeZones in execution with

Show Time%ones clicked

To apply the selected time zone to the clock, change
DateTime := Now;

to

DateTime := LTimeZone.ToLocalTime (Now) ;

in event handler Timer1Timer.

O *

14:20:13

Click File|Save All.
i}rocedure TForml.ListViewlItemClick (Sender: TObject) ;
Now Run (F9) and test the VA
program. SelectedItem : TListViewItem; P
. Begin
Figure 42.71 shows the result If SelectedItem <> Nil
when Show Time Zones Then SelectedItem.Checked := False;
. If ATltem <> Nil

and then Australia/

Then
Sydney are clicked. The time Begin
shown1bythe<ﬂockchanges Text2.Text := Altem.Text;

. CurrentTimeZone := Text2.Text;
tOShO“ISdeCytHne' SelectedItem := Altem;
End
Else Text2.Text := CurrentTimeZone;
LTimeZone := TBundledTimeZone.GetTimeZone (Text2.Text):;
End;

Table 42.14 Code to insert into event handler TForm1.ListView1ItemClick

34. Finally change the Caption property of Forml to Analogue Clock.
Click File|Save All.

177

@ Formi - O EY

Show Time Hide Time

Africa/Asmara 14:22:50
Zones Zones

Africa/Abidjan

Africa/Accra

Africa/Addis_Ababa

Africa/Algiers

Africa/Bamako

Africa/Bangui

Africa/Banjul

Africa/Bissau

O
O
O
O
Africa/Asmara
O
O
O
O
O

Africa/Blantyre v

Fig. 42.70 AnalogueClockWithTimeZones i éxgsution with
Show Time Zones and then Africa/ Asmaug cliked

@ Formi1 - O X

Show Time Hide Time

Australi 38
Zones Zones ustralia/Sydney 03:38:04

Australia/Darwin

Australia/Eucla

Australia/Hobart

Australig/Lindeman

Australia/Lord_Howe

Australia/Perth

Australia/Sydney

CET

O
O
O
O
O
[“Australia/Melbourne
O
O
O

CSTRCDT
v

Fig. 42.71 AnalogueClockWithTimeZones in execution fully operational

(Download from www.educational-computing.com/DelphiBook/Code/ Chapter42/AnalogueClock\X/ithTimeZones.rar)

178

HOW TO PROGRAM EFFECTIVELY IN DELPHI

B Purpose: To learn how to configure a multi-device application for a different target device

The Analogue Clock application was developed on a Windows 10 PC with target operating system set to Windows
64-bit and target device Windows desktop.

Adjustments may be needed to fit the application to a different target device, e.g. a Samsung S8+ mobile phone.

In this section, the target device will be a Samsung S8+ device in developer’s mode connected via USB to the
Windows 10 development PC.

1. First select the operating system and the target device as shown in Figure 42.72 and Figure 42.73.

AnalogueClockWithTimeZones.dproj - Projects 1

Fv-REEGREY-SYRBv
#5 ProjectGroup
Fig. 42.72 Toolbar options windows for target (5] AnalogueClockWithTimeZones
“"q. Build Configurations (Debug)
= Target Platforms (Android6d)
ﬁl Android 32-bit - Andraid SDK 25.2.5 32-bit

W Android 84-bit | [J SM-G935F v

operating system and device

2. Select Style: Android and View: Android 5" 5" Android 64-bit - Andreid SDK 25.2.5 64-bit

Phone. The UI design changes to that shown in Targst
) [].sM-G955F

Flgl”e 42.73. = Configuration

3. Set Align property for SpeedButton2 to Most %7 Librasies
Left. Fig. 42.73 Rrojfects pane for AnalogueClockWithTimeZones

4. Set Align property for Text2 to Most Left.
Set its Width to 169. il 38 . _

& B gV ® i55000 1503 Show hme Hide Time I casasanca 1241:50
. . Zanes Zonas
Click File|Save All. ;
SpeedButtgn2
5";:";;"“ H';;;'!"ET amenca/Blanc-Sabion OT:51:53
1 AmericafArgenting/Sz.. _
AmaricafArgentina/Sa.. /‘1’-1 . 1 \\
AmericalArgentinglT .. ll,f":lﬂ 2\"'.'.
America/Argentina/l... / E I'.
AmericalAruba I: 1 3 ||
—_ 1 l||
&
& AL . . LY ’
haliiissnins Fig. 42.73 Ul design mode - 4

PInRrTaA ol for Android 5" Phone \ g B H,/
AmericasRahia T, e
Aamerica/Hahia_Hande.., Now Run (F9) and deploy to
Smerita aheion the target device, a Samsung S8+
AmericasBelem mobile phone.
America/Belze B N Figure 42.74 shows
ArmercasBlne-Sablon AnalogueClockWithTimeZones i a "

Americalfoa_Vista executing on the target device with

America/Bogata time zone Africa|Casablanca

Fig. 42.74 AnalogueClockWithTimeZones

AmericayBose selected. .
executing on Samsung S8+

I amarieafCanchridne Figure 42.75 ShOWS the

application executing on the target device after Show Time Zones clicked

and America/Blanc-Sabon selected.

Fig. 42.75 ShowTimeZones clicked
179

The original settings are restored on switching back to Windows 64-bit, target Windows desktop. This means that
the project maintains one set of settings for the Windows target and a different set for the Android target. Delphi
does this using the resource directive $R placed at the beginning of the implementation section of the unit as
shown below for Windows desktop and Android 5” Phone

Implementation
{SR *.fmx}
{$R *.LgXhdpiPh.fmx ANDROID}

A resource directive is added for each target. Figure 42.76 shows the resource directive list for three different
Android targets, an Apple Mac laptop and Windows desktop., which is placed in the implementation section of the

unit.
{SR *.fmx}
{SR *.NmXhdpiPh.fmx ANDROID}
{SR *.LgXhdpiPh.fmx ANDROID}
{$SR *.SmXhdpiPh.fmx ANDROID}
{SR *.Macintosh.fmx MACOS}

Fig. 42.76 Resource directives for differ@nt targets

Programming Task

Build and deploy AnalogueClockWithTimeZoneg to an Android or Apple device.

180

