
1

Learning objectives:

 ■ Be familiar with the concept of
 a hash table and its uses.

 ■ Be able to apply simple
 hashing algorithms.

 ■ Know what is meant by a
 collision and how collisions are
 handled using rehashing.

 2 Fundamentals of data structures

2.6 Hash tables

 ■ 2.6.1 Hash tables
Tables
Using a table to store records
A table in computer science is a data structure of rows and columns, an
example is shown in Table 2.6.1. This table consists of 4 rows of data in three
columns, labelled ULN, Forename, Surname. Each row stores a single
record of three fields containing data for an individual student as follows:

• student’s unique learner number (ULN) consisting of eight digits,
e.g. 34567890

• Forename

• Surname

An individual record is uniquely identified by its key field, ULN.

The rows of this table are indexed with the first row that contains a student
record being labelled with index 0, the second with index 1, and so on.

This table will occupy a part of the computer’s RAM (main memory). It can
also be stored permanently in backing store or secondary storage, e.g. magnetic
disk. However, to be searched or manipulated, it must first be copied from
secondary store to RAM.

Searching the table for a record
The table could be searched for a particular record by starting at the row
labelled with index 0 and scanning the entries in turn until the record is found
if it is present, or the end of the table is reached. This is known as linear search
which is one of several ways that an existing record can be ‘looked up’.

Inserting a new record into the table
Table 2.6.2 shows a table similar to Table 2.6.1 but this table has three empty
rows following the four rows of data. A new record could be inserted in the first
empty row, a second new record in the next row and so on until the table is
full.

ULN Forename Surname
0 34567890 Fred Bloggs
1 90002789 Mary Smith
2 74432167 Ahmed Khan
3 24567813 Sarah White

Table 2.6.1 Student records stored in a table

Copyright Dr K R Bond 2016

 2 Fundamentals of data structures

2

Deleting a record in the table
The row containing the student record to be deleted is located by searching
from row 0. Once found, the data in the row is deleted. To avoid gaps
appearing in the table, the occupied rows following this row are moved up to
remove the gap.

Limitations of this type of table and table access
A problem surfaces with the operations of searching, inserting and deleting
described above when the table contains a large number of records,
e.g. 10,000. It just takes too much of the computer’s time to perform these
operations. One solution is to use a hash table based on a well-chosen hash
function.

Hash table
A hash table resembles an ordinary table as described above but differs in the
method used to access the rows of the table.

A row of a hash table is accessed directly when looking up, inserting and
deleting a record, i.e. it does not start from row 0 every time but instead goes
directly to the required row. Movement of records when deleting a record is
also eliminated.

Table 2.6.3 shows a hash table that has gone from being empty to containing 3

records located in three different rows with indices, 2, 5, and 6, respectively.

as input data.

Key concept

Hash table:
The table gets its name from the
method used to determine the
row to use.
The hash value generated by
applying a hash function to a
key is the table index where the
record with this key should be
stored if the row is free.

ULN Forename Surname
0 34567890 Fred Bloggs
1 90002789 Mary Smith
2 74432167 Ahmed Khan
3 24567813 Sarah White
4
5
6

Table 2.6.2 Student records stored in a table with room for new records

ULN Forename Surname
0
1
2 90002789 Mary Smith
3
4
5 74432167 Ahmed Khan
6 24567815 Sarah White

Table 2.6.3 Hash table storing three student records

24567813 Sarah White

74432167 Ahmed Khan

90002789 Mary Smith

Copyright Dr K
R Bond 2016

2.6.1 Hash tables

3

The table gets the name hash because of the method used to generate the
address or row number. A randomising function called a hash function is
applied to the record’s key, in this case the 8-digit unique learner number or
ULN, to map the possible 8-digit ULN values into a much smaller range of
values, the possible row numbers. This process is known as hashing.

If the ULN values were used directly as specifiers of row addresses we would
have to accommodate addresses covering all possible values of an 8-digit
number, 108 addresses in total, even though only a small subset of ULNs might
be required, e.g. those used in a particular school.

For ease of understanding, the number of rows for the table in Table 2.6.3 has
been made small intentionally at seven, and labelled 0, 1, 2, ..., 5, 6.

Hash function
The hash function takes as input the record’s key (hash key) and outputs the
row address of the row for this record. The output is called the hash value or
hash.

In our example, the hash value ranges from 0 to 6 for the seven rows of the
given table. A hash function, H, that will map 8-digit ULNs to the set
{0, 1, 2, ..., 5, 6} is shown below

H(ULN) = ULN Mod 7

Mod is the modulo arithmetic operator which calculates the remainder after
integer division (see Chapter 1.1.3).

Table 2.6.4 shows three possible values of ULN being mapped to 2, 5 and 6
respectively e.g. 90002789 when divided by 7 gives 12857541 with a remainder
of 2.

Main
Memory
(RAM)

ULN H(ULN)
90002789 2
74432167 5
24567815 6

Table 2.6.4 Some hash values produced
by hash function H applied to ULN keys.

Questions

Calculate H(ULN) for the following ULNs
(a) 31258745 (b) 62517493 (c) 49981627

Hint: The scientific mode of Microsoft Windows calculator has a Mod
operator.

1

Key concept

Hash function:
Is a function H, applied to a key
k, which generates a hash value
H(k) of range smaller than the
domain of values of k,
e.g.
H : {00000000..99999999}
 → {0..6}

Key concept

Hash key:
Is the key that the hash function
is applied to.

Key concept

Hashing:
The process of applying a hash
function to a key to generate a
hash value.

Copyright Dr K R Bond 2016

 2 Fundamentals of data structures

4

Simple hashing functions
Hashing and hash tables are a way that memory locations for records can be
assigned so that records can be retrieved quickly.

A hashing function must be relatively quick to compute whilst at the same time
generating an even spread of values for the given inputs, the keys.

Another way that the latter can be expressed is that each hash value generated
by the hashing function should be equally probable.

Achieving this depends on both the particular key values being hashed, and the
particular hash function employed.

The value of N in modulo N is chosen to be prime because this can contribute
to producing an even spread of hash values.

One simple hash function that attempts to achieve these objectives, sums the
squares of the ASCII codes of each character of Key, as shown in Figure 2.6.1
in pseudo-code.

The Ord function returns the ASCII code of a given character,

e.g. Ord('A') = 65.

The individual characters of Key are accessed using array indexing starting at
0, e.g. Key[0] accesses the first character in the string.

The algorithm generates hash values in the range 0 ... 522 because Sum is
Modded with 523, a prime number.

Suppose that Key stores a string, then the steps to convert Key into a storage-
address returned in Hash is as follows:

Looking up a record in a hash table
A record with a given key can be looked up by just calculating the hash of its
key and checking the associated storage location.

English-French dictionary example
In this example, English words and their French equivalents are stored in
records in a hash table, HashTable, using a hashing function, H, based on the

Sum ← 0

For i ← 1 To Length(Key)

 Sum ← Sum + Ord(Key[i]) * Ord(Key[i])

Endfor

Hash ← Sum Mod 523

Figure 2.6.1 Hashing algorithm that calculates
a storage address in range 0 to 522

Information

The term “hash” originates by

analogy with its non-technical

meaning, to “chop and mix”.

Hash functions often “chop”

the input domain into many

sub-domains that get “mixed”

e.g. add the first three digits of

the key, add the last three digits,

concatenate the two resulting

digit strings then map into the

output range by applying modulo

N.

Copyright Dr K R Bond 2016

2.6.1 Hash tables

5

hashing algorithm shown in Figure 2.6.1. Each record must have a key field which uniquely identifies the record.
In this case, the key is the English word.

The hashing function, H, assigns hash table memory location H(k) to the record with key, k.

In our English-French dictionary example, H(k) could be H('BEACH') where k = 'BEACH' for the record
containing the English word 'BEACH' and the equivalent French word 'PLAGE'.

The storage structure, HashTable, that will be used with this address has the following data structure:

 THashTableArray = Array[0..522] Of TRecord

Where the data structure TRecord is defined as follows

 TRecord = Record

 EnglishWord : String

 FrenchWord : String

 End

Questions

Calculate H(k)for the following keys, k
 (a) PEN (b) CAT (c) NOW (d) WON
 (ASCII codes for the characters 'A'...'Z' map to the range 65 ... 90 - see Unit 2 Chapter 5.5)

2

Programming tasks

Write a program to store English words and their French equivalents in a hash table which is an array or
its equivalent with addresses in range 0 to 522. The English word and its French equivalent should be
stored together in a record or equivalent data structure at an address which is calculated by the hashing
function, H, described above. The table should be initialised so that every key field stores the string '-1'
to indicate that this field’s record has yet to be used to store an English-French word pair. Use your
program to temporarily store the English words, PEN, CAT, NOW and their French equivalents.
(English word with its French equivalent:
PEN – PLUME, CAT – CHAT, NOW – MAINTENANT)

Extend your program so that after storing the English-French word pairs for PEN, CAT and NOW, the
program uses the hashing function, H, to retrieve the French equivalent when the user enters PEN, CAT
or NOW. Use a loop to enable the user to continue to look up the French equivalent until the user decides
otherwise.

1

2

Copyright Dr K R Bond 2016

 2 Fundamentals of data structures

6

Collisions
The hash values calculated in Questions 2(c) and 2(d) are identical because the
English words contain the same letters, but arranged in a different order (NOW
and WON). So both words hash to the same address. This situation is known
as a collision. Clearly, there is only space at this address for one English-French
word pair.

Collisions can be resolved in two ways:

1. Store the record in the “next available” empty location in the table, or

2. Store a pointer in each table location that points to a list of records that
have all collided at this table location, otherwise set the pointer value to
null.

Method 1 – closed hashing or open addressing
The first way of resolving a collision is to rehash which means to generate a
new table row address at which to store the English-French word pair.
One rehash method, called linear rehash, calculates a new address by adding
one to the original address before testing that the location with this new address
is empty, e.g. indicated by '-1' in the EnglishWord field.

The rehash step may have to be repeated until an empty slot is found.

To avoid going off the end of the table, the new address is made to wrap
around to the beginning of the hash table, if necessary and assuming there is an
empty slot, by using modular arithmetic as follows:

 Repeat

 Address ← (Address + 1) Mod 523

 Until HashTable[Address].EnglishWord = '-1'

This method is an example of closed hashing or open addressing because
other row addresses of the hash table are open to being used but access to
addresses outside the hash table are closed off.

The table, HashTable, is an array whose addresses run from 0 to 522.

The table is initialised with 523 empty English-French word pair records in
which every EnglishWord field has the string '–1' stored in it to indicate that
this field is unoccupied and the whole record is empty.

Figure 2.6.2 shows an algorithm expressed in pseudo-code for inserting an
English-French word pair into an initialised HashTable. The English word
to insert is supplied in WordInE and its French equivalent in WordInF. Each
row of the hash table has space for a record with two fields, EnglishWord
and FrenchWord.

Key concept

Closed hashing or open
addressing:
Method in which a collision is
resolved by storing the record in
the “next available” location.

Key concept

Collision:
A collision occurs when two or
more different keys hash to the
same hash value. For the hash
table this means a hash value
of a location in the hash table
which is already occupied.

Copyright Dr K R Bond 2016

2.6.1 Hash tables

7

Clearly for this algorithm to work the hash table must have at least one empty row.

Address ← Hash(WordInE)

If HashTable[Address].Key = '-1'

 {-1 indicates field is empty}

 Then

 Begin

 HashTable[Address].EnglishWord ← WordInE

 HashTable[Address].FrenchWord ← WordInF

 End

 Else

 If Not(HashTable[Address].EnglishWord = WordInE)

 {not already stored}

 Then

 Begin

 {find empty slot)

 Repeat

 Address ← (Address + 1) Mod 523

 Until (HashTable[Address].EnglishWord = '-1')

 Or (HashTable[Address].EnglishWord = WordInE)

 {already stored}

 If (HashTable[Address].EnglishWord = '-1')

 Then

 Begin

 HashTable[Address].EnglishWord ← WordInE

 HashTable[Address].FrenchWord ← WordInF

 End

 End

Figure 2.6.2 Hashing algorithm incorporating a linear rehash that
inserts an English-French word pair into a hash table

Copyright Dr K R Bond 2016

 2 Fundamentals of data structures

8

Searching for a specific record in a hash table accommodating collisions
Figure 2.6.3 shows an algorithm expressed in pseudo-code that can be used to
search for an English-French word pair in a hash table, HashTable, given an
English word stored in the variable WordInE.

The English word may or may not be present in the hash table.

If it is, then its French equivalent is returned in variable, Retrieve otherwise
message 'Not found' is returned in Retrieve.

Clearly for this algorithm to work the hash table must have at least one empty
row.

Setting up a hash table that uses closed hashing
Method 1 (closed hashing or open addressing) requires that the number of
rows in the table exceeds by about a third the maximum number of records that
will ever be stored in the table. When every record has been stored in the table
the table should still contain empty rows (i.e. table should never be more than
roughly two thirds full). If this isn’t the case then search times will be extended
as will the time to insert new records.

Although this might seem a waste of storage space, there is a very good reason
for working in this way. Studies have shown that the number of collisions
depends on

• the hash keys

• the hash function

• the ratio of total number of records to total number of possible
locations available to these records in the hash table.

A perfect hash function hashes all the hash keys to hash values without the
occurrence of a single collision. That is why it is called perfect.

However, finding a perfect hash function is extremely difficult.

Address ← Hash(WordInE)

Found ← False

Repeat

 If HashTable[Address].EnglishWord = WordInE

 Then Found ← True

 Else Address ← (Address + 1) Mod 523

Until Found Or (HashTable[Address].EnglishWord = '-1')

If Found

 Then Retrieve ← HashTable[Address].FrenchWord

 Else Retrieve ← 'Not found'

Figure 2.6.3 Hashing algorithm incorporating a linear rehash method that is
used to search a hash table for the French equivalent of a given English word

Copyright Dr K R Bond 2016

2.6.1 Hash tables

9

The effectiveness of a hash function is very sensitive to the hash key values.
These are not always fully known in advance.

Using a ratio of roughly two thirds for total number of records to total number
of hash table locations seems to minimise collisions for hash functions that are
close to perfect. The hash table shown in Table 2.6.5 has six student records
and seven rows. One improvement could be to change the number of rows
to 9 or even better, 11, a prime number. Using a prime number for modulo
arithmetic helps to minimise collisions.

However, the hash function could be further improved as well as it is far from
being perfect.

The aim is to make each hash value generated by the hash function equally
likely when the function is applied to any of the possible hash keys, i.e. no one
particular hash value should be more favoured than any other.

ULN Forename Surname
0 34567876 Fred Bloggs
1
2 90002789 Mary Smith
3 64156906 Alex Black
4 24567805 Visha Baal
5 74432167 Ben Brown
6 90002985 Shena Patel

Table 2.6.5 Hash table with not enough rows to minimise collisions

Questions

Copy and complete Table 2.6.6

3

ULN ULN Mod 7 ULN Mod 11
24567805
34567876
64156906
74432167
90002789
90002985

Table 2.6.6

Copyright Dr K R Bond 2016

 2 Fundamentals of data structures

10

Questions

Insert the ULNs from Table 2.6.6 into a copy of the hash table shown
in Table 2.6.7 using the hashing function,

H(ULN) = ULN Mod 7

The student Forename and Surname fields do not need to be
completed.
You should deal with any collision by performing a linear rehash until
an empty slot is found.

Insert the ULNs from Table 2.6.6 into a copy of the hash table shown
in Table 2.6.8 using the hashing function,

H(ULN) = ULN Mod 11

The student Forename and Surname fields may be omitted for
convenience.

4

5

ULN Forename Surname
0
1
2
3
4
5
6
7

Table 2.6.7 Hash table

ULN Forename Surname
0
1
2
3
4
5
6
7
8
9
10

Table 2.6.8 Hash table

Copyright Dr K R Bond 2016

2.6.1 Hash tables

11

Method 2 - open hashing or closed addressing
In this alternative method of dealing with collisions, the hash table is extended
to include a pointer field. The pointer field for each row is initialised to the null
pointer value when the table is set up (⊣).

When a collision occurs the colliding record is linked to the corresponding
table row by changing the pointer field of this row to point to the colliding
record as shown in Figure 2.6.4.

Questions

Explain how the hash table in Table 2.6.8 when populated with
student records would be used to look up the forename and surname
of student with ULN = 24567805.

Explain how the hash table in Table 2.6.7 when populated with
student records would be used to look up the forename and surname
of student with ULN = 24567805.

Why is it necessary to store the key field in a hash table even when an
application using this hash table must already know the value of the
key field?

6

7

8

Investigation

Devise an experiment to investigate collisions on a hash table that
is to store 6000 student records. Use a random number generator
to generate unique student ID numbers. Try different ratios of
total number of records to total number of table rows in the hash
table.

1

Investigation

The hash function H that we have used so far is far from perfect for
many data sets that we wish to store in a hash table. Investigate other
hashing functions.

2

Key concept

Open hashing or closed
addressing:
In a collision, the other rows of
the hash table are closed to the
colliding record which must,
instead, be attached to the
addressed table row in a chain
or linked list of other colliding
records. The table row uses a
pointer field to point to the
linked list.

Copyright Dr K R Bond 2016

 2 Fundamentals of data structures

12

⊣

Another record colliding with row 2 will be linked or chained to the record
of 'Mary Smith' by changing the pointer field of Mary’s record to point
to this record and so on, thus forming a chain of linked records or linked list.
Method 2 is called open hashing or closed addressing because locations
outside the table are open for use by the hashing algorithm, i.e. the linked list
locations, whilst other row addresses are closed off.

Deleting a record
Care must be exercised when an entry in a hash table is deleted.

Closed hashing
In closed hashing, collisions are resolved by rehashing and storing the colliding
record in another row whose table index is the rehash value.

However, if the entry at the original hash value table index or any of the rehash
value table entries are deleted and the deleted entry remains empty, searching
can be stopped prematurely before all potential matching entries have been
examined.

Therefore, a deleted entry must be distinguishable from an entry that has never
been used. This requires a special marker to be present in the key field part of
the hash table entry when the entry is not in use. The special marker will use
one value to indicate that this entry has never been used and a different value to
indicate that it has been used but the entry has been deleted.

The special marker values should not use any value that potentially could occur
in the key fields of the data set to be stored in the hash table.

Open hashing
In open hashing, collisions are resolved by chaining the colliding record to the
table entry slot whose index is the hash. Care must be taken when deleting the
record in the table row when the row has a nonempty chain.

A special marker can be left in the key field to signal that there is at least one
record in a chain (linked list) attached to the row so that a search does not fail
to look at the chain when seeking a match.

There are at least two alternatives that do not rely on a special marker.

Information

The definitions assigned to the

terms closed hashing and open

hashing have been interchanged

over the years so care needs to

be exercised when interpreting

them. The key is to focus on

concept/method not name and to

make sure that you understand

the former.

⊣⊣⊣

64156906 Black Alex Null

ULN Forename Surname Pointer
0 34567876 Fred Bloggs Null
1 Null
2 90002789 Mary Smith
3 24567805 Visha Baal Null
4 Null
5 74432167 Ben Brown Null
6 Null

Figure 2.6.4 Hash table that uses open hashing

Copyright Dr K R Bond 2016

2.6.1 Hash tables

13

In alternative one, the search examines the pointer field of an empty slot to see if a chain is attached.

In alternative two, the first record in the chain is moved into the table slot whilst preserving its link to the rest of the
chain.

Questions

An empty hash table is set up for open hashing. The following hashing function is to be used to store
variable names beginning with an uppercase letter in range A...Z, as well as other information.

H(VariableName)=(code for first letter of VariableName x 11) Mod M

Where M is the number of rows in the hash table.

Using M = 5 and coding letters of the alphabet as follows, A=1, B=2, ..., Z=26 show the contents of the
hash table after inserting the following variable names:

CHECK, OVERTIME, MAIN, P, URL, TAXRATE, INDEX, N, GENDER
You may ignore in your answer the other information associated with each variable name.

(a) Using the hashing algorithm expressed in pseudo-code below, calculate the hash value for the hash
key 'PEN' stored in string variable Key. You will need access to an ASCII code table to map characters to
their equivalent ASCII codes. This is performed in the pseudo-code by the function Ord. The Length
function returns the number of characters in the string. The symbol'*' means multiply.

 Sum ← 0

 For i ← 0 To Length(Key)- 1

 Sum ← Sum + Ord(Key[i]) * Ord(Key[i])

 EndFor

 HashValue ← Sum Mod 523
(b) Now repeat the exercise with the made-up word 'NEP'.
(c) Can you see that there is a problem? What is the problem?
(d) Describe two ways that could be used to overcome this problem.

Explain why care must be exercised when deleting an entry in a hash table that uses closed hashing and on
which searching occurs after deletion.

A person owns n distinct pairs of socks, which are kept in an unmatched pile in a drawer.
Individual socks are pulled from the drawer blindly, then identified and placed in a separate pile according
to identity.
(a) How many individual socks must the person pull from the drawer to ensure that two are pulled that
match?
(b) In what respect does this process resemble a hash table and open hashing?

9

10

11

12

Copyright Dr K R Bond 2016

 2 Fundamentals of data structures

14

In this chapter you have covered:

 ■ The concept of a hash table and its uses.

 ■ Applying simple hashing algorithms.

 ■ What is meant by a collision and how collisions are handled using
 rehashing.

Questions

In an application, student records are identified by their key field, the student’s unique learner number
(ULN) consisting of eight digits, e.g. 34567890. The application has to process a ULN allocated in the
range 1000000 to 99999999 but it will never have to deal with more than 500 ULNs.
(a) Explain why when storing student records in a table in memory it would not be sensible to use the
ULN as the row address for the record, e.g. 34128496.
(b) Explain why the use of a hash table would be a better option for this application.

 (a) State two advantages of using hashing and the hash table approach over the alternative approach
which just stores records in an ordinary table starting from the first row.
 (b) It is noticed that after inserting many records into a hash table that uses closed hashing, searches are
taking much longer than they did.
 (i) Explain why this may be the case
 (ii) Suggest a solution that could potentially restore searching times to what they were.

Explain why it is necessary to store the hash key in a hash table.

13

14

15

Copyright Dr K R Bond 2016

