
561

■ 12.1.1 Function type
What is a function?
Loosely speaking, a function is a rule that, for each element in some set A of
inputs, assigns an output chosen from set B but without necessarily using every
member of B.

For example, the function f

f : {0,1,2,3} → {0,1,2,3,4,5,6,7,8,9}

maps 0 to 0, 1 to 1, 2 to 4 and 3 to 9 when the rule is: output the square of the
input.

Function as process
In function as process, a function is a rule that tells us how to transform some
information into some other information, e.g. the integer 2 into its square 4.

Function as object
In function as object, the function is a thing in its own right.

For example, a pencil sharpener is an object. If the focus of attention is a pencil
then the pencil sharpener just represents a process - sharpening pencils, input:
unsharpened pencil; output: sharpened pencil.

In the function as process view, we are applying the function sharpen to
pencils; it’s the pencil that counts. But we can also think about the pencil
sharpener as a thing in its own right, when we empty it of pencil shavings, or
worry about whether its blade is sharp enough. This is the function as object
view.

Questions

A function f
f : {0,1,2,3} → {0,1,2,3, ..., 25, 26, 27}

maps 0 to 0, 1 to 1, 2 to 8, 3 to 27.
What is the rule?
A function f

f : {0,1,2,3} → {0,1,2,3, 4, 5, 6}
maps 0 to 0, 1 to 2, 2 to 4, 3 to 6.
What is the rule?

1

2

Learning objectives:

■ Function as process

■ Function as object

■ Function, f, has a function
type, f : A → B where the type
is A → B.

■ A is the argument type,
and B is the result type.

■ The set A is called the domain
and the set B is called the
co-domain.

■ The domain and co-domain
are always subsets of objects in
some data type.

12 Fundamentals of functional programming

12.1 Functional programming paradigm

Key principle

Function as process:
A function is a rule that tells
us how to transform some
information into some other
information.

Function as object:
The function is a thing in its
own right.

Copyright Dr K
R Bond 2016

12 Fundamentals of functional programming

562

What is a function type?
Just as data values (e.g. 6, 9.1, True) have types (integer, real, Boolean
respectively) so do functions. Function types are important because they state
what type of argument a function requires and what type of result it will return.

A function f which takes an argument of type A and returns a result of type B
has a function type which is written

A → B

To state that f has this type, we write

f : A → B

 For example,

1)	 squareroot : real → real

2)	 square : integer → integer

The function named squareroot applied to an argument of data type real
produces a result of data type real, e.g.

squareroot (4.0) → 2.0

The function named square applied to an argument of data type integer

produces a result of data type integer, e.g.

square (2) → 4

Questions

For each of the following what is the function as process and
what is the function as object?
(a) A single sheet of A4 paper containing text is placed in
	 the machine whose action is to produce a
	 printed copy of the sheet.
(b) A kitchen tool is used to remove skin from
	 potatoes.

3

Key principle

Function type:
A function f which takes an
argument of type A and returns
a result of type B has a function
type which is written
A → B

Copyright Dr K R Bond 2016

12.1.1 Function type

563

Domain and co-domain
If f : A → B is a function from A to B we call the set A, the domain of f, and
the set B the co-domain of f. The domain and co-domain are always subsets
of objects in some data type. For example, if A is a subset of domain data
type integer then its values might be 0, 1, 2, 3, ..., 149, 150. Often it is just
convenient to use the data type directly,

square : integer → integer

The function square then has an argument type, integer and a result type, integer
even though in practice a subset of integers only will be used.

Practical Activity
Use a text editor such as NotePad++ to write Haskell programs. Save these
Haskell programs using extension .hs.

Figure 12.1.1.1 shows NotePad++ being used to create a function named
square with one parameter x of data type Integer and a body x∗x. This file has
been saved with filename square.hs in folder c:\book\haskell.

Figure 12.1.1.1 NotePad++ editor showing square.hs

The :: operator (read as has type) is used in Haskell to express what type an
expression has.

Integer is the type of mathematical integers (int could have been used and is
the type of integers that fit into a word on the computer - this will vary from
computer to computer).

Launch WinGHci if you are using a machine running the Windows operating
system (ghci on Linux-based machines). The WinGHci window is shown in
Figure 12.1.1.2.

Key concept

Domain and co-domain:
If f : A → B is a function from
A to B, we call the set A, the
domain of f, and the set B the
co-domain of f.

Copyright Dr K R Bond 2016

12 Fundamentals of functional programming

564

Figure 12.1.1.2 WinGHCi showing square.hs loaded, compiled and run

 At the Prelude prompt (Prelude>) type the command to change to a
specified folder.

:cd c:\book\haskell followed by <return>.

Commands begin with a colon, i.e. :

Now load the file containing the program defining the function square.

At the Prelude prompt type

:load square.hs followed by <return>.

WinGHCi will perform a compilation of a module called Main in order to
run square.hs interactively.

If there are no errors loading and compiling the Prelude prompt will be
replaced by the prompt *Main.

At the *Main prompt, type

square 4 followed by <return>.

The correct answer, 16, is displayed.

To return to the Prelude prompt, type :module or :m

In this chapter you have covered:

■■ Function as process

■■ Function as object

■■ Function, f, has a function 	type, f : A → B where the type is A → B.

■■ A is the argument type, and B is the result type.

■■ A is called the domain and B is called the co-domain.

■■ The domain and co-domain are always subsets of objects in some
	 data type.

Copyright Dr K R Bond 2016

