
Mazes
By Dr K R Bond

From course material supplied by Educational Computing Services Ltd

Page 1 of 3
© Dr K R Bond 2011

see www.educational-computing.co.uk for course information

Travelling by car to unfamiliar places is greatly aided by GPS-based route planners
that can be purchased for less than £100 such as TomTom™. Route finding goes back
centuries to Cretan times when Theseus destroyed the Minotaur residing in the
twisting maze of the labyrinth at Knossos.
Route finding offers plenty of scope for exploring several useful concepts of
Computer Science such as abstraction, data modelling, algorithms and algorithm
efficiency, record structures, arrays, lists, recursion, stacks, objects, procedure calling
and graphs. Figure 1 shows a typical route finding task, finding a route through a
maze from entrance to exit, e.g. house to exit from the "maze garden".
 Figure 1©
How could the junctions, entrance, exit and
pathways between these be represented if
the task was delegated to a computer
program?

First let's abstract away unnecessary detail
and record the maze in a representation
called a graph using the following rules:

Vertices or Nodes

1. Vertex for a starting point, i.e. entrance
2. Vertex for a finishing point, i.e. exit
3. Vertices for all dead ends
4. Vertices for all the points in the maze where more than one path can be taken,

i.e. junction
Edges

Connect the vertices according to the paths in the maze.

To keep the description as simple as possible consider the "maze" in Figure 2 which
has one entrance labelled 1, one dead end labelled 3, one exit labelled 4 and one
junction labelled 2. Figure 2
The graph that models this is shown in Figure
3. The circles represent vertices or nodes and
the interconnecting lines, edges.

Figure 3

How can this graph be represented for processing by
route finding software?
We can use an adjacency list as shown in Table 1.

 Table 1
Vertex 1 is connected to vertex 2. Vertex 2 is
connected to vertices 1, 3 and 4, etc.
This table can be represented by a one-
dimensional array of records with each record
storing the corresponding adjacent vertices, the
first record 2, the second record 1, 3, 4 and so on.

™ Registered trademark of TomTom International
© Royalty-free stock iStockphoto LP iStock_000003304776Medium.jpg standard licence

Vertex Adjacent vertices
1 2
2 1, 3, 4
3 2
4 2

Mazes
By Dr K R Bond

From course material supplied by Educational Computing Services Ltd

Page 2 of 3
© Dr K R Bond 2011

see www.educational-computing.co.uk for course information

The structures for this are shown in Table 2.
 Table 2

ListType = Array[1..MaxNoOfAdjacentVertices] Of Integer;
VertexType = Record
 List : ListType;
 NoOfListVertices : Integer;
 State : String;
 End;
GraphType = Array[1..MaxNoOfVertices] Of VertexType;

Table 3 shows how a Graph array of the type GraphType would be initialized for the
graph in Figure 3. The state field is needed so that when route finding the state of a
vertex can be changed from "undiscovered" to "discovered".
 Table 3

Graph[1].List[1] ← 2; Graph[1].NoOfListVertices ← 1; Graph[1].State ← 'undiscovered';
Graph[2].List[1] ← 1; Graph[2].List[2] ← 3; Graph[2].List[3] ← 4; Graph[2].NoOfListVertices ←
3;
Graph[2].State ← 'undiscovered';
Graph[3].List[1] ← 2; Graph[3].NoOfListVertices ← 1; Graph[3].State ← 'undiscovered';
Graph[4].List[1] ← 2; Graph[4].NoOfListVertices ← 1; Graph[4].State ← 'undiscovered';

A route from vertex 1 to vertex 4 can be found using the recursively defined
algorithm shown in Table 4, coded as procedure FindRouteToGoal with
signature:
 FindRouteToGoal(Var Graph : GraphType; CurrentVertex :
Integer; GoalVertex : Integer; Var Stack : StackType);

The Var refers to the parameter passing mechanism known as "call by address".

Procedure FindRouteToGoal is called initially with CurrentVertex = 1 and
GoalVertex = 4.

Table 4

Graph[CurrentVertex].State ← 'discovered';
Stack.Push (CurrentVertex);
If CurrentVertex = GoalVertex
 Then
 While Not Stack.Empty
 Do
 {
 Node ← Stack.Pop;
 Writeln(Vertex);
 }
 Else
 If Graph[CurrentVertex].NoOfListVertices <> 0
 Then
 For i ← 1 To Graph[CurrentVertex].NoOfListVertices
 Do
 If (Graph[Graph[CurrentVertex].List[i]].State
 = 'undiscovered')
 Then
 {
 Vertex ← Graph[CurrentNode].List[i];
 FindRouteToGoal(Graph, Vertex, GoalVertex, Stack);
 Stack.Pop;
 }

Mazes
By Dr K R Bond

From course material supplied by Educational Computing Services Ltd

Page 3 of 3
© Dr K R Bond 2011

see www.educational-computing.co.uk for course information

Each time this procedure is called the number of the current vertex is pushed onto the
stack as shown in Figure 4. If a trial path fails to reach the goal vertex the stack is
popped until a path not yet explored can be reached. If the goal vertex is reached, the
stack will contain the vertices for a route between the starting vertex and the goal
vertex but in the reverse order. This route is printed out before the execution of the
procedure halts. If the goal cannot be reached the procedure will halt with the stack
empty.

Figure 4
Figure 4 shows the state of the stack as the pathways
1-2, 1-2-3 and 1-2-4 are tried in turn.

Figure 5 shows a more complex maze and its
equivalent graph. Sketching the state of the stack as
the algorithm in Table 4 is hand traced is a useful
exercise for students to try.

 Figure 5

The work here could form
the basis of several
projects. For example, one
such project could generate
mazes of specified
dimensions as shown in
Figure 6 which could then
be route searched using the
algorithm given in Table 4.
One application seen in
project work is the design
of climbing walls. There
are plenty others.

 Figure 6

This article is based on the content of an Educational
Computing Services Ltd course on teaching AQA A
Level Computing and preparing candidates for COMP4
project work.

