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Travelling by car to unfamiliar places is greatly aided by GPS-based route planners 
that can be purchased for less than £100 such as TomTom™. Route finding goes back 
centuries to Cretan times when Theseus destroyed the Minotaur residing in the 
twisting maze of the labyrinth at Knossos. 
Route finding offers plenty of scope for exploring several useful concepts of 
Computer Science such as abstraction, data modelling, algorithms and algorithm 
efficiency, record structures, arrays, lists, recursion, stacks, objects, procedure calling 
and graphs. Figure 1 shows a typical route finding task, finding a route through a 
maze from entrance to exit, e.g. house to exit from the "maze garden".  
 Figure 1© 
How could the junctions, entrance, exit and 
pathways between these be represented if 
the task was delegated to a computer 
program? 
 

First let's abstract away unnecessary detail 
and record the maze in a representation 
called a graph using the following rules: 
 

Vertices or Nodes 
 

1. Vertex for a starting point, i.e. entrance 
2. Vertex for a finishing point, i.e. exit 
3. Vertices for all dead ends 
4. Vertices for all the points in the maze where more than one path can be taken, 

i.e. junction 
Edges 
 

Connect the vertices according to the paths in the maze. 
 

To keep the description as simple as possible consider the "maze" in Figure 2 which 
has one entrance labelled 1, one dead end labelled 3, one exit labelled 4 and one 
junction labelled 2. Figure 2 
The graph that models this is shown in Figure 
3. The circles represent vertices or nodes and 
the interconnecting lines, edges. 

Figure 3 
 

 
How can this graph be represented for processing by 
route finding software? 
We can use an adjacency list as shown in Table 1. 

 Table 1 
Vertex 1 is connected to vertex 2. Vertex 2 is 
connected to vertices 1, 3 and 4, etc. 
This table can be represented by a one-
dimensional array of records with each record 
storing the corresponding adjacent vertices, the 
first record 2, the second record 1, 3, 4 and so on.  

                                                
™ Registered trademark of TomTom International 
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Vertex Adjacent vertices 
1 2 
2 1, 3, 4 
3 2 
4 2 
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The structures for this are shown in Table 2. 
 Table 2 

 

ListType = Array[1..MaxNoOfAdjacentVertices] Of Integer; 
VertexType = Record 
               List : ListType; 
               NoOfListVertices : Integer; 
               State : String; 
             End; 
GraphType = Array[1..MaxNoOfVertices] Of VertexType; 
 

 

Table 3 shows how a Graph array of the type GraphType would be initialized for the 
graph in Figure 3. The state field is needed so that when route finding the state of a 
vertex can be changed from "undiscovered" to "discovered". 
 Table 3 
 

Graph[1].List[1] ← 2; Graph[1].NoOfListVertices ←  1; Graph[1].State ←  'undiscovered'; 
Graph[2].List[1] ←  1; Graph[2].List[2] ←  3; Graph[2].List[3] ←  4; Graph[2].NoOfListVertices ←  
3; 
Graph[2].State ←  'undiscovered'; 
Graph[3].List[1] ←  2; Graph[3].NoOfListVertices ←  1; Graph[3].State ←  'undiscovered'; 
Graph[4].List[1] ←  2; Graph[4].NoOfListVertices ←  1; Graph[4].State ←  'undiscovered'; 
 

A route from vertex 1 to vertex 4 can be found using the recursively defined 
algorithm shown in Table 4, coded as procedure FindRouteToGoal with 
signature: 
 FindRouteToGoal(Var Graph : GraphType; CurrentVertex : 
Integer;  GoalVertex : Integer; Var Stack : StackType); 
 

The Var refers to the parameter passing mechanism known as "call by address". 
 

Procedure FindRouteToGoal is called initially with CurrentVertex = 1 and 
GoalVertex = 4.  

Table 4 
 

Graph[CurrentVertex].State ←  'discovered'; 
Stack.Push (CurrentVertex); 
If CurrentVertex = GoalVertex 
  Then 
    While Not Stack.Empty 
      Do 
        { 
          Node ←  Stack.Pop; 
          Writeln(Vertex); 
        } 
  Else 
    If Graph[CurrentVertex].NoOfListVertices <> 0 
      Then 
        For i ←  1 To Graph[CurrentVertex].NoOfListVertices 
          Do 
            If (Graph[Graph[CurrentVertex].List[i]].State  
                  = 'undiscovered') 
              Then 
                { 
                  Vertex ←  Graph[CurrentNode].List[i]; 
                  FindRouteToGoal(Graph, Vertex, GoalVertex, Stack); 
                  Stack.Pop; 
                } 
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Each time this procedure is called the number of the current vertex is pushed onto the 
stack as shown in Figure 4. If a trial path fails to reach the goal vertex the stack is 
popped until a path not yet explored can be reached. If the goal vertex is reached, the 
stack will contain the vertices for a route between the starting vertex and the goal 
vertex but in the reverse order. This route is printed out before the execution of the 
procedure halts. If the goal cannot be reached the procedure will halt with the stack 
empty. 

Figure 4 
Figure 4 shows the state of the stack as the pathways 
1-2, 1-2-3 and 1-2-4 are tried in turn. 
 
Figure 5 shows a more complex maze and its 
equivalent graph. Sketching the state of the stack as 
the algorithm in Table 4 is hand traced is a useful 
exercise for students to try. 
 
 Figure 5 

 
 
 
 
The work here could form 
the basis of several 
projects. For example, one 
such project could generate 
mazes of specified 
dimensions as shown in 
Figure 6 which could then 
be route searched using the 
algorithm given in Table 4. 
One application seen in 
project work is the design 
of climbing walls. There 
are plenty others. 
 
 Figure 6 
 
 
 
 
 
 

This article is based on the content of an Educational 
Computing Services Ltd course on teaching AQA A 
Level Computing and preparing candidates for COMP4 
project work. 
 
 
 


